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ABSTRACT

The acidizing and fracturing waste fluid in a wellsite in northern Shaanxi was treated by catalytic oxidation 
and flocculation precipitation. It investigated the effect of different coagulants and their dosage and the 
wastewater pH on coagulation precipitation. As for chemical oxidation experiment, it investigated the 
effect of oxidant dosage and reaction time on its treatment effect. The results showed that when 30% 
hydrogen peroxide (volume percentage) was added at the dosage of 0.3% and oxidized for 50 min, 
the pH was adjusted to 7.5 and 350 mg/L polyaluminum chloride (PAC) and 4 mg/L polyacrylamide 
were added (PAM); after processing the waste liquid, total iron, chemical oxygen demand (COD), 
chromaticity, and average corrosion rate were reduced from 252.75 mg/L, 3427.50 mg/L, 624.15°, and 
0.1226 mm/a to 0.12 mg/L, 275.18 mg/L, 125° and 0.0217 mm/a, respectively; effective removal of iron 
and color, reduced COD, and controlled corrosion was achieved.

INTRODUCTION

In the process of shale gas exploitation, hydraulic fracturing 
technology is needed to increase the recovery rate (Barati & 
Liang 2014, Mauter & Alvarez 2014, Lester et al. 2013). Hy-
draulic fracturing is accomplished by injecting a large amount 
of fracturing fluid into the formation to improve reservoir 
permeability (Glaze & Kang 1989). Combining acidizing and 
fracturing operations for oil and gas well transformation is 
an important method used for oil and gas field stimulation 
(Olsson et al. 2013, Davarpanah 2018). After the fracturing 
operation is completed, most of the fracturing fluid will be 
returned to the ground after breaking the rubber to form shale 
gas fracturing flowback fluid. A variety of additives are often 
added to the fracturing fluid to meet the requirements of sand 
carrying and drag reduction (Adham et al. 2018, Puspita 
2015). At the same time, it will contact with oil and gas, 
water and rocks in the stratum during the fracturing process, 
resulting in many types of pollutants in the fracturing fluid. 
The viscosity is high and the treatment is difficult (Poyatos 
et al. 2010, Amr et al. 2013, Boczkaj et al. 2010, Bello et al. 
2017) . If it is not treated, it will cause environmental pollu-
tion. The development of shale gas fracturing flowback fluid 
treatment and reuse technology is of great significance for 
shale gas development and environmental protection (Reilly 

et al. 2015, You et al. 2019). Recently, advanced oxidation 
process (AOP) has been successfully used to treat industrial 
wastewaters that are non-biodegradable and toxic to micro-
organisms (Kim et al. 2004, Boczkaj & Fernandes 2017, Li 
et al. 2018) Especially, Fenton oxidation has been applied 
for the decolorization of effluents from textile dyeing process 
and dye manufacturing process. Compared to other oxidation 
processes, such as UV/H2O2 process, costs of Fenton oxida-
tion are quite low (Dutta et al. 2001). Fenton oxidation has 
been lately used for different treatment processes because of 
its ease of operation, the simple system and the possibility 
to work in a wide range of temperatures (Solozhenko et al. 
1995). At present, the main treatment method for fracturing 
waste liquid is oxidation viscosity reduction with coagulation 
and precipitation. The main treatment technology for acidifi-
cation waste liquid is alkali neutralization with coagulation 
and precipitation (Makhathini et al. 2020, Mao 2018 et al). 
In recent years, research has focused on identifying highly 
efficient, widely applicable, and economical treatment tech-
nologies for acidizing and fracturing waste fluid.

Water quality characteristics of the acidizing and frac-
turing waste liquid from a wellsite in northern Shaanxi, 
was analyzed. According to the characteristics of fracturing 
wastewater, the suspended solids and colloidal in waste liquid 
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were removed by coagulation sedimentation. Removal of iron 
and color, reduction of COD removal, and corrosion control 
were investigated using catalytic oxidation and flocculation 
precipitation (Zhang et al. 2020). Then the COD of waste-
water was reduced by chemical oxidation treatment in order 
to achieve recycling standard of enterprise. The hydroxy 
radicals (·OH) produced in the process could oxidate the 
organic compounds in the wastewater so that the wastewater 
can meet the discharge standard (Szpyrkowicz et al. 2001, 
Arslan & Balciolu 1999). This study aims to provide tech-
nical guidance for effective waste processing of acidizing 
and fracturing waste liquid through discussing experimental 
conditions. It investigated the effect of different coagulants 
and their dosage and the wastewater pH on coagulation 
precipitation. As for the chemical oxidation experiment, it 
investigated the effect of oxidant dosage and reaction time 
on its treatment effect.

MATERIALS AND METHODS

Instrumentation and Reagents

Instrumentation used in the study was the following: UV-Vis 
spectrophotometer (UV-2350, Shanghai Right Instrument 
Co., LTD.), electronic balance (CP214, Mr. Hauser Instru-
ment Co., LTD.) and circulating water vacuum pump (SHZ-D 
(III), Gongyi City Instrument Co., LTD in China). Reagents 
used in the experiment were the following: hydrogen perox-
ide (30%), concentrated sulfuric acid, congo red test paper, 
hydroxylamine hydrochloride, sodium hydroxide, polyalu-
minum chloride (PAC), polyacrylamide (PAM).

Water Quality Characteristics Analysis Method

The determination of Fe2+, Fe3+ plasma, and COD in waste 
liquid was performed in accordance with water and wastewa-
ter detection methods and an oil and gas field water analysis 
method (Ferrer & Thurman 2015). Oil and suspended matter 
content were determined using a recommended index and 
an analysis method of water injection quality of a clastic 
reservoir (Oetjen & Thomas 2016). Corrosion rates were 
determined using a water corrosion test method (Pier et al. 
2018).

Determination of Viscosity, Chromaticity and Light 
Transmittance

	(1)	 Viscosity: The passage time of distilled water and the 
passage time of water sample were determined using 
a Uhler viscometer, and water sample viscosity was 
calculated according to equation (1).

	 μ= (t2×r)/t1	  …(1)

	     t1 = time required for distilled water, s

	 t2	 = passage time required for water sample, s

	 r	 = density of water sample g/cm3

	 m	 = viscosity of water sample, mPa·s

	(2)	 Chromaticity: The water sample absorbance was meas-
ured at 350 nm. According to the chromaticity standard 
curve and due to the high chromaticity of the water 
sample, the measured value was calculated after making 
a 1:10 dilution.

	(3)	 Light transmittance: The light transmittance of the water 
sample was measured at 680 nm. Due to the low light 
transmittance of the water sample, the measured value 
was calculated after making a 1:10 dilution.

Optimization Method for Catalytic Oxidation Agent 
System

The pH was adjusted to 7.5 after a certain volume of hydro-
gen peroxide was added and oxidized for a certain time. PAC, 
an inorganic flocculant, and PAM, a coagulant, were added 
and allowed to stand for 30 min. The light permeability of 
the clear liquid was based on optimal dosage of H2O2, the 
oxidant, oxidation time, flocculant dosage, and interval time.

RESULTS AND DISCUSSION

Analysis of Water Quality Characteristics

The water sample was taken from the acidizing and fracturing 
waste fluid of a well site in northern Shaanxi. Following the 
standards and methods mentioned in Section 1.2, the water 
quality characteristics of the waste liquid were analyzed. The 
results are shown in Table 1. The content of divalent iron 
was 218.25 mg/L. The viscosity was relatively low at 1.11 
mPa∙s. Oil content and suspended substance content were 
low, at 9.69 mg/L and 37.00 mg/L, respectively. Chromaticity 

Table 1: The characteristics of wastewater.

Serial number Test items Content

1 pH 3.5

2 Fe2+ (mg∙L-1) 218.25

3 Fe3+ (mg∙L-1) 34.50

4 Oil (mg∙L-1) 9.69

5 Suspended solids (mg∙L-1) 37

6 Chromaticity (°) 624.15

7 Viscosity (mPa∙s) 1.11

8 Light transmittance (%) 25.82

9 COD (mg∙L-1) 3427.50

10 Mean corrosion rate (mm/a) 0.1226
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was high and reached 624.15° in the case of 1:10 dilution. 
Light transmittance was low at only 25.82% in a 1:10 di-
lution, and COD was high at 3427.50 mg/L. The average 
corrosion rate was high at 0.1226 mm/a, suggesting strong  
corrosion.

Analysis of Catalytic Oxidation Process

The concentration of Fe2+ in the acidizing and fracturing 
liquid concentration was high, up to 218.25 mg/L, and the 
pH was 3.5. According to the principle of Fenton’s reagent, 
a solution of H2O2 in an acidic environment (pH is generally 
3 to 4) (Tang et al. 2018) , with Fe2+ as a catalyst can produce 
hydroxyl free radicals (·OH) and organic macromolecules, 
which reduces ion in the waste liquid. Bacteria and other 
pollutants have strong oxidation capabilities and can de-
grade macromolecular structures, and Fe3+ and Fe2+ can be 
converted to waste liquid. Stable gel breaking off can be 
achieved, which strengthens flocculation and bactericidal 
activities (Yoon et al. 2001, Watts et al. 2005). Therefore, 
the acidic environment and water quality characteristics 
of the waste liquid, such as high content of iron divalent, 
were utilized to conduct catalytic oxidation treatment of the 
acidified and fracturing waste liquid according to the method 
described in the section 1.4. As for chemical oxidation ex-
periment, it investigated the effect of the oxidant dosage 
and reaction time on its treatment effect.

Effect of H2O2 Addition on the Reaction

The oxidant dosage (H2O2) were optimized. The effects of 
oxidant dosage on COD removal rate and transmittance rate 
were investigated. The experimental results of H2O2 optimi-
zation amount are shown in Fig. 1 and Table 2 . 

As shown in Fig. 1, when the dosage of H2O2 increases 
from 0.1% to 0.3%, the COD removal rate of wastewater 

gradually increases in the proportion of the increase of 
the amount of H2O2. However, when the dosage of H2O2 
increases from 0.3% to 0.5%, the removal rate of COD in 
wastewater gradually decreases. When the dosage of H2O2 
is 0.3%, the COD removal rate reaches the maximum. When 
the concentration of H2O2 is low, the COD removal rate of 
wastewater increases with the increase of H2O2 concentration 
(Fe2++H2O2 ® Fe3++·OH+OH-). When the amount of H2O2 
exceeds 0.3%, the removal effect of H2O2 on ·OH increases 
with the increase of H2O2 added (H2O2+·OH ® H2O+·OH2). 
Moreover, the high concentration of ·OH produced by the 
decomposition of high concentration of H2O2 will also oxi-
dize Fe2+ to Fe3+, thereby reducing the utilization of ·OH and 
reducing the COD removal rate. It can be seen from Figure 
1 that the transmittance of wastewater increases with the 
increase of H2O2 dosage. The flocculation and settlement 
phenomena are shown in Table 2.

Effect of Oxidation Time on the Reaction

The oxidation time was optimized. The effects of oxidation 
time on COD removal rate and transmittance rate was 

Table 2: H2O2 optimization amount.

H2O2 addition/% Flocculation and sedimentation

0.1 The floc was loose and less in quantity, and the 
supernatant was turbid.

0.2 The floc was loose and less in quantity, and the 
supernatant was turbid.

0.3 The floc volume is large and dense, and the 
supernatant is clear

0.4 The floc volume was large and dense, and the 
supernatant was clear and had air floatation.

0.5 The floc volume was large and dense, and the 
supernatant was clear and had air floatation.
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Fig. 1: H2O2 optimization amount.
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investigated. the experimental results of optimization of 
oxidation time are shown in Tables 3 and Fig. 2.

It can be seen from Fig. 2 that with the extension of time, 
the COD removal rate of wastewater increases gradually. The 
COD removal rate reached the highest in 50 min. With the 
extension of time, the COD removal rate tends to be stable, 
and the transmittance of wastewater increases with the in-
crease of H2O2 dosage. H2O2 produced an increase in ·OH 
in the Fe2+ catalyzed waste liquid (Oetjen & Thomas 2016). 
In the waste liquid, organic macromolecular chain structures 
play an important role in oxidative damage, which destroys 
the stability of the waste liquor colloid system (Gordalla et 
al. 2013), and in turn, flocculation settlement is reinforced. 
Therefore, from the oxidation-flocculation effect, it can be 
concluded that the addition of H2O2 in the catalytic oxida-
tion-flocculation experiment of the waste aciding fluid is 
optimal at 0.3% and when the oxidation time is 50 min. The 
flocculation and settlement phenomena are shown in Table 3.

Analysis of Flocculation and Precipitation Process

Waste aciding fluid will produce a strong corroding and 
alkaline environment required by the flocculant. At the same 
time, the Fe2+ remaining in the waste liquid after catalytic 
oxidation treatment will be converted into Fe3+. In an alka-
line environment, a Fe (.OH)3 precipitate will be formed, 
which has strong adsorption, coagulation, and flocculation 
characteristics (Costa et al. 2017, Kreipl & Kreipl 2017, 
Wisen et al. 2019). Therefore, neutralization of the alkaline 
environment first occurs during flocculation precipitation, 
followed by flocculation precipitation treatment. Accord-
ing to the method described in section 1.4, after catalytic 
oxidation the waste liquid was flocculated and precipitated. 
It investigated the effect of different coagulants and their 
dosage and the wastewater pH on coagulation precipitation.

The Effects of the Wastewater pH on Coagulation

 The effects of pH on COD removal rate and transmittance 
rate were investigated. The experimental results of pH 

optimization in flocculation and precipitation are shown in 
Fig. 3.

It can be seen from Fig. 3 that the COD removal rate 
of wastewater increases with the increase of pH. With the 
increase of pH, COD removal rate tends to be stable. At the 
same time, with the increase of pH, the transmittance of 
wastewater increases gradually, and tends to be stable with 
the increase of pH. However, considering the reagent cost 
and reason of sludge discharge, and alkalinity neutralization 
at the optimal pH of 7.5, the transmittance can reach more 
than 95% after processing wastewater.
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Table 3: Optimization of oxidation time. 

Oxidation time/min Flocculation and sedimentation

10 Loose flocs, less amount, slow settlement

20 Loose flocs, less amount, slow settlement

30 Loose flocs, less amount, slow settlement

40 Loose flocs, less amount, slow settlement

50 The floc is compact, large in quantity and quick 
in settling

60 The floc is compact, large in quantity and quick 
in settling

Table 4: Optimization of flocculant types.

Types of flocculants PAC PFS

Transmittance (%) 97.3 45.6
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and the COD removal rate is 91.95%. When PAC dosage 
continued to increase, the COD removal rate decreased 
slightly. From Fig. 4 it can be inferred that the transmittance 
of wastewater increases with the increase of PAC dosage.

The Effects of Different Coagulants and Their Dosage 
on Coagulation

The experimental results of preferred coagulant types are 
given in Table 5, which show that when a coagulant has an 
ion degree of 12% and a molecular weight of 8×106 and the 
Types of PAM is 7#, the water transmittance after treatment 
can reach more than 98.8%.

The experimental results of Optimization of coagulant 7# 
addition are shown in Fig. 5. The COD removal rate increases 
with the increase of the PAC dosage. When the dosage of 
PAC is 3mg/L, the COD removal effect reaches at its best, 
and the COD removal rate is 91.84%; when the dosage of 
PAC continues to increase, the COD removal rate decreases 
slightly. Fig. 5  shows that the transmittance of wastewater 
increases with the increase of coagulant 7# dosage,and the 
coagulant 7# is dosed at 4 mg/L, the water transmittance after 
treatment can reach more than 99%.

As shown by Fig. 3, as the pH increased, and flocculation 
improved. With an increase in alkalinity, ferric iron ion and 
hydroxyl ions form iron hydroxide precipitation, resulting 

in a flocculation precipitation strengthening effect (Ge et al. 
2015). However, considering the reagent cost and reason of 
sludge discharge, and alkalinity neutralization at the optimal 
pH of 7.5, the light transmittance can reach more than 95% 
after processing wastewater. The flocculation and precipita-
tion conditions were optimized successively. As can be seen 
from Table 4 and Fig. 4, PAC was selected as the inorganic 
flocculant, and the effect was improved when the PAC dosage 
was 350 mg/L. It is shown in Table 5 and Fig. 5 that when a 
coagulant has an ion degree of 12%, and a molecular weight 
of 8×106, and the PAM is dosed at 4 mg/L, the water trans-
mittance after treatment can reach more than 99%.

The most effective catalytic oxidation and flocculation 
precipitation process for treating shale gas fracturing and 
acidizing liquid wastewater is indicated by the water qual-
ity indicators shown in Table 6. Results are as follows: pH 
increased to 7.5, Fe2+ was reduced to 0.10 mg/L, COD was 
reduced to 275.18 mg/L, chromaticity was reduced to 125°, 
and the average corrosion rate decreased to 0.0217 mm/a.

CATALYTIC OXIDATION WITH FLOCCULATION 
AND PRECIPITATION TREATMENT PROCESS

Based on the experiment results, the process of catalytic 
oxidation with flocculation and precipitation was proposed 
to treat waste liquid. The process flow is shown in Fig. 6.
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The treatment process can be divided into three stages. 
The first stage is catalytic oxidation, which mainly includes 
Fenton’s reagent condition optimization (pH, catalyst, oxi-
dant) and oxidation time optimization. The second stage is 
flocculation precipitation, including alkali neutralization, 
flocculant optimization and, coagulant optimization. The 
third stage is feasibility analysis and treatment of water reuse 
mixture, including a feasibility analysis of a water reuse mix-
ture after treatment and removal of related heavy metal ions.

CONCLUSION

	(1)	 Acidified fracturing waste liquid is characterized by low 
pH, high chromaticity, high iron content, high COD, 
and low light transmittance. Catalytic oxidation with 
flocculation and precipitation is the process selected 
for treatment.

	(2)	 The water transmission rate increased from 25.82% to 
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Fig. 6: Catalytic oxidation with flocculation precipitation treatment process.

Table 6: Water quality analysis after treatment.

S. No. Test items Content

1 pH 3.5

2 Fe2+ (mg∙L-1) 0.10

3 Fe3+ (mg∙L-1) 0.02

4 Oil (mg∙L-1) 2.98

5 Suspended solids (mg∙L-1) 8

6 Chromaticity (°) 125

7 Viscosity (mPa∙s) 0.97

8 Light transmittance (%) 99.15

9 COD (mg∙L-1) 275.18

10 Mean corrosion rate (mm/a) 0.0217

0.1226 mm/a to 0.0217 mm/a after catalytic oxidation 
with flocculation and precipitation treatment. The dos-
age of H2O2 was 0.3% in the catalytic oxidation process, 
and pH was 7.5 during flocculation and precipitation. 
The PAC concentration dosage was 350 mg/L, and the 
dosage of PAM with ion degree of 12% and molecular 
weight of 8×106 was 4 mg/L.
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