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	       ABSTRACT
The majority of flood assessment and warning systems primarily focus on the occurrence 
of floods caused by river overflow, taking into account factors such as intense precipitation. 
Improving flood resilience, on the other hand, requires a deeper understanding of how these 
factors affect each other and how specific local conditions can have an impact. This study 
offers impartial tools for estimating the severity of the effects brought on by heavy rainfall 
to facilitate the prompt communication of effective measures, such as the evacuation of 
livestock and human settlements and the provision of medical assistance. These tools 
take into account the cascading effects of various causative factors contributing to heavy 
rainfall. This article aims to assess the various factors that contribute to the impacts of heavy 
rainfall, including the timestamp (indicating soil saturation and moisture levels), river gauges 
(determining water congestion in canal systems), average aerial precipitation (indicating 
runoff), and the rainfall itself, taking into account both in situ and ex-situ impacts. Support 
Vector Machine (SVM), Decision Tree (DT), K-Nearest Neighbour (KNN), and Naive Bayes 
are some of the machine learning methods used in the study to find out how dynamically 
vulnerable affected districts are to flooding in different compound scenarios. This analysis 
is conducted by leveraging historical observed datasets. The results demonstrate the 
feasibility of mitigating the issue of excessive and insufficient flood warnings resulting from 
the cumulative effects of intense precipitation. By implementing a categorization system that 
divides the affected areas into various portions, or districts, according to the main factors 
contributing to flooding, namely rainfall, river discharge, and runoff, The suggested model 
presents novel insights into the sequential consequences of intense precipitation in the 
regularly inundated regions of North Bihar, India. Innovative tools can serve as valuable 
resources for flood forecasters and catastrophe managers to comprehend the extent of 
flooding and the consequential effects of intense precipitation.

INTRODUCTION

Several studies conducted by (Goswami et al. 2006), (Zou 
& Ren 2015), and (Abbas et al. 2023) have shown an 
increase in the frequency of heavy or extreme rainfall events 
in various regions, indicating a pan-Asian phenomenon. 
Similarly, global research conducted by (Brunetti et al. 
2004), (Groisman et al. 2005), and (De Luis et al. 2011) has 
also observed a similar trend of extreme rainfall occurrences 
across different parts of the world. A higher concentration of 
greenhouse gases in the atmosphere may make it more likely 
for heavy rain to occur (Easterling et al. 2000, Groisman et 
al. 2005). This is supported by many studies and real-world 
evidence from observations or model predictions. Increasing 
concentrations of greenhouse gases are blamed for the shift 
in the frequency of severe rainfall (Meehl & Tebaldi 2004). 

Regional land-use and land-cover changes (LULC) have 
been observed to have an impact on mesoscale convection, 
as noted by (Pielke et al. 2011) and (Niyogi et al. 2017). The 
frequency of floods has exhibited a notable upward trend 
during the past three decades, as documented by (Najibi & 
Devineni 2018). The susceptibility of different regions within 
the country to flooding is attributed to the unanticipated 
precipitation patterns resulting from the geographical and 
hydrological characteristics of the subcontinent. The primary 
factors contributing to floods, which frequently lead to the 
loss of human lives and property, include heavy precipitation, 
obstruction in river outflow and associated canal systems, 
uncontrolled urban development, and alterations in land use 
and land cover. The adverse impacts of floods, resulting from 
the overflow of water from various sources such as riverine 
flooding, runoff, in-situ rainfall, and groundwater status, can 
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be attributed to factors such as exposure, lack of resilience, 
and inadequate early warning systems. These negative effects 
encompass a wide range of areas, including infrastructure, 
human health, economic activity, and the environment 
(Beevers et al. 2012). According to (Mohapatra et al. 
2021), there has been an improvement in the precision of 
predicting extreme precipitation within a short- to medium-
term timeframe of up to five days. Nevertheless, the current 
level of proficiency in predicting and alerting to heavy 
precipitation is inadequate for mitigating the risks associated 
with potential casualties and property damage. To safeguard 
both human lives and economic stability, it is imperative to 
expand the scope of weather forecasting and warning systems 
beyond solitary predictions of severe weather events. This 
entails including impact-based forecasting systems, which 
utilize impact modeling techniques, and subsequently 
integrating impact estimation systems that employ impact-
based modeling. This comprehensive approach is crucial for 
facilitating appropriate response actions. 

According to reports, the flooding in North Bihar affected 
a significant proportion of the population, specifically 76%. 
Each year, a significant number of individuals, along with 
their domesticated animals, become displaced as a result of 
the catastrophic floods occurring in the Indian state of Bihar. 
The catchment areas of the rivers that comprise the primary 
river systems in northern Bihar, namely the Gandak, the 
Bagmati/Adhawara, and the Kosi/Mahananda, are located 
within the mountainous region of Nepal. Originating in 
Nepal, these rivers traverse densely populated regions of 

North Bihar, including Supaul, Araria, west Champran, 
east Champaran, Sitamarhi, and other locations. The slope 
of these rivers exhibits a gradual decline, transitioning 
from a rate of 6 meters per kilometer to 6 centimeters per 
kilometer near the Gangetic floodplain. During the monsoon 
season’s intense precipitation, the lower catchment areas of 
the river basin experience a significant influx of run-off. 
The occurrence of intense precipitation in the vicinity of 
the Himalayan foothills, particularly near Nepal and other 
geographical regions, resulted in a sudden and significant rise 
in water levels, commonly catalyzing the onset of flooding 
events. Hence, the considerable inundation observed in these 
river systems can be attributed to the interplay between 
precipitation in the catchment areas and precipitation in 
the higher tributary regions. Hence, the comprehensive 
inundation of settlements situated on either side of the 
embankment of these rivers is a multifaceted interaction 
between the water level at a specific moment in a specific river 
section, the actual precipitation in the associated catchments, 
and the precipitation in the downstream catchment area. The 
understanding of both the individual and combined effects of 
these flooding mechanisms is often limited, resulting in either 
an underestimation or overestimation of the consequences of 
such an event, depending on the information source.

Meteorological systems that range in scale from the 
synoptic to the local scale have an impact on the occurrence 
of flooding(Reddy et al. 2008, Pandit 2009, Ranalkar et al. 
2016, Kumar et al. 2021, Prasad et al. 2021). These systems 
contribute to the process of flooding by facilitating the transfer 
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excessive and insufficient warnings. 
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of rainfall to river systems through numerous tributaries. This 
process occurs across a wide geographical area characterized 
by intricate orography, as illustrated in Fig. 1 The inundation 
of the Ganga River’s catchment area, predominantly located 
in the northern region of Bihar, resulted in widespread 
flooding across the state. This occurrence was primarily 
attributed to the excessive precipitation experienced during 
the summer monsoon season, leading to the river’s water 
exceeding its normal capacity and inundating floodplains 
and canals. The objective assessment conducted by (Shankar 
et al. 2022) examines the cascading impacts of substantial 
river releases and the accompanying high rainfall in North 
Bihar, India, which has led to recurrent flooding incidents. 
There isn’t a lot of written material that fully talks about the 
dynamic vulnerability assessment of the cascading effects of 
in situ rainfall and how it affects river levels, as well as the 
right order of events over time. The objective of this study is 
to address the existing knowledge gap by implementing the 
techniques utilized by operational forecasters and disaster 
managers to do precise risk and vulnerability evaluations. 
This would consequently diminish the probability of both 
excessive and insufficient warnings.

In the realm of natural hazards, the most often employed 
vulnerability assessment approaches encompass historically 
derived impact data, evaluation indicator systems, hazard 
loss curves, and machine learning techniques. The presence 
of localized historical hazard data for every research site 
is crucial for the efficacy of the historical hazard-oriented 
approach. Although this methodology proves highly effective 
in facilitating cross-regional comparisons, its predominant use 
lies across expansive study domains, rendering the evaluation 
of specific phenomena challenging. Nevertheless, (Goyal et 
al. 2021) highlighted the fact that the assessment indicator 
system’s methodology is highly subjective, primarily as a 
result of the arbitrary nature of weight computation. The use 
of expert scoring is a common method for assigning weight, 
as (Moghadas et al. 2019) and (Xu et al. 2023) demonstrate. 
However, it is important to note that this method is inherently 
subjective and has the potential for substantial errors in 
the ultimate evaluation outcomes. The use of a hazard 
damage curve, alternatively referred to as a vulnerability 
curve, facilitates the evaluation of the correlation between 
the magnitude of a cause and the resultant impact incurred 
by the entities that are most susceptible to its impact. The 
present methodology can assess vulnerability outcomes 
for a given geographical area through the measurement 
of the extent of harm incurred by distinct characteristics. 
The susceptibility of social and economic structures is an 
often-discussed subject when examining the impacts of 
catastrophic occurrences. To evaluate the susceptibility to 
disasters, scholars have conventionally placed significant 

reliance on the direct use of machine learning methodologies. 
While the use of extensive data sets for training purposes 
can lead to precise vulnerability forecasts, the application 
of vulnerability mapping specifically for flood assessments 
remains unexplored and is considered a nascent topic.

This research provided a comparative analysis of several 
multiclassification methods, including Decision Tree (DT), 
Naive Bayes, Support Vector Machine (SVM), and K-Nearest 
Neighbour (KNN), in the context of dynamic impact-based 
forecasting utilizing machine learning techniques. This 
paper presents an analysis of the impacts resulting from 
rainfall and associated systems, utilizing the most up-to-
date historical data sets of impacts specifically about the 
districts of north Bihar. This research article discusses the 
investigation of the impacts in three districts, specifically 
West Champaran, Darbhanga, and Vaishali. This work 
aims to address a research gap in the quantitative analysis 
of dynamic impact-based forecasting and its corresponding 
vulnerability assessment. The article’s organizational 
structure is outlined as follows: the discussion of the datasets 
and their corresponding research areas is presented in Section 
2. Following this, Section 3 explains the suggested strategy, 
and Section 4 presents the findings. Sections 5 and 6 then 
provide a thorough analysis and conclusion, respectively.

STUDY AREAS AND DATASET

Study Areas

The scope of this study is the prediction of dynamic impacts 
and the assessment of dynamic vulnerability related to 
rainfall and accompanying floods in three selected districts 
of North Bihar, namely West Champaran, Darbhanga, and 
Vaishali, as depicted in Fig. 2 The districts chosen for this 
study were based on a combination of different geographical 
settings and various causative factors for the impacts of 
floods. West Champaran, the largest district, was included 
due to its significant size and influence in the region and 
its proximity to the central region of Nepal. Additionally, 
the topography of the Himalayan mountain range has a 
significant impact on the rainfall patterns in this region. The 
second district, Vaishali, exemplifies the characteristics of 
flat lands located at a distance from the Himalayan foothills. 
The selection of the third district, Darbhanga, is based on 
its geographical location within the catchment areas of the 
Bagmati and Adhawara rivers (see Fig. 2). The geographical 
extent of the region under consideration encompasses the 
longitudes ranging from 84° E to 88.5° E, together with the 
latitudes spanning from 25° N to 27.6° N. The Upper Ganga 
basin has a multitude of rivers that traverse the northern 
region of Bihar. The Gandak River basin spans an area of 
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58,800 square kilometers, while the Bagmati/Adhawara 
River covers 18,845 square kilometers. Additionally, the 
Kosi/Mahananda river basin extends over an area of 95,552 
square kilometers (see Fig. 2). The governments of Bihar 
(India) and Nepal have implemented several remedial steps 
to establish regular monitoring systems for floods and 
safeguard the low-lying regions of North Bihar (Sinha et 
al. 2008). Subtropical monsoons have a significant impact 
on the state of Bihar in India. The hydrological regime of 
this particular state is significantly impacted by its climate, 
thereby influencing a diverse range of geographical features. 
Approximately 84.8% of the state’s yearly precipitation is 
derived from the monsoons, a meteorological phenomenon 
resulting from the interaction between easterly and westerly 
monsoonal winds, owing to the state’s particular geographical 
positioning. The economic development of the local area is 
contingent upon the sectors of agriculture, aquaculture, 
horticulture, and tourism, all of which are susceptible to 
fluctuations in climatic conditions. Consequently, the 
effective control of floods in the rivers is of paramount  
importance.

Dataset

The details of the datasets utilized for the creation of the 
dynamic impact-based rainfall forecasting system are 
presented in Table 1.

Therefore, the input characteristics are obtained from 
datasets containing information on river levels, average 
aerial precipitation, and district rainfall. The corresponding 
impact datasets are also collected, and the level of impacts 
is measured using the methods outlined in Fig. 3 and 4.  The 
dataset comprised 70% of the total data, which was used for 
training the models. The remaining 30% of the dataset was 
utilized for evaluating the performance of the trained models. 
The time steps taken throughout the training process were 
also recorded. The impact datasets before quantification are 
displayed in Table 2.

MATERIALS AND METHODS

AI/ML-Based Impact Modeling

This approach involves the development of a model that 

regime of this particular state is significantly impacted by its climate, thereby influenc-
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is contingent upon the sectors of agriculture, aquaculture, horticulture, and tourism, all 

of which are susceptible to fluctuations in climatic conditions. Consequently, the effec-

tive control of floods in the rivers is of paramount importance. 

      

Fig. 2: Map of North Bihar (Districts, Catchments, Water Body) and the Sample Dis-

tricts (West Cahmparan, Darbhanga, and Vaishali). 

Dataset 

The details of the datasets utilized for the creation of the dynamic impact-based rainfall 

forecasting system are presented in Table 1. 

Table 1: The details of the datasets used in the dynamic impact-based rainfall prediction 

system. 
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Datasets 

Name Pe-

riod 

Unit Source 

Fig. 2: Map of North Bihar (Districts, Catchments, Water Body) and the Sample Districts (West Cahmparan, Darbhanga, and Vaishali).

Table 1: The details of the datasets used in the dynamic impact-based rainfall prediction system.

Type of the Datasets Name Period Unit Source

River levels River gauge of associated 
districts

June to 
October(2020-2022)

In metre Central Water Commission, Govt. of India.

Rainfall Point Rainfall In mm India Meteorological Department, Govt. 
of India

Overall Aerial 
Precipitation of the 
Catchement

 Interpolated Rainfall( Storm 
Analysis)

In mm Flood Meteorological Office, IMD, Govt. 
of India

Associated impacts 
datasets

Loss of Life( population) quantification Disaster Management Department, Govt. 
of Bihar, IndiaEvacuation of population quantification

Crop damages quantification

Dwelling Unit damages quantification
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Table 2: Sample of impact Dataset prepared by the executive agency and Compiled by the Disaster Management Department, Govt. of Bihar.
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15-
Aug-21

Vaishali 7 20 19 65 1.9 0.0 0.2 0 0 0 0 0 0 0 0 0 0 0 608 608 65

31-
Aug-21

9 21 49 152 3.0 0.0 0.2 0 3 7 3 7 11 31 13 10.5 4 0 830 0 152

01-
Sep-21

10 21 61 176 3.4 0.0 0.2 0 3 7 3 7 11 31 13 10.5 4 0 830 0 176

15-
Sep-21

16 200 90 366 4.3 0.1 0.6 8286 0 0 0 0 0 0 0 0 6 5 830 0 366

30-
Sep-21

16 203 91 372 4.6 0.1 0.6 8286 0 0 0 0 0 0 0 0 6 5 830 0 372

01-Oct-
21

16 203 91 372 4.6 0.1 0.6 8286 0 0 0 0 0 0 0 0 6 5 830 0 372

15-Oct-
21

16 204 90 398 5.0 0.1 0.6 8286 0 0 0 0 0 0 0 0 16 10 830 0 392

integrates impact magnitude( quantified) or vulnerability, 
exposure data sets, i.e., the causative factors of the floods 
(both in-situ and ex-situ), and the current states of the districts 
in terms of timeframe. Fig. 3 shows the four levels of impact 
quantification based on the combined impacts of the factors 
that caused the floods. These levels are green, yellow, orange, 
and red. The historical impact data is confirmed based on 
the flow chart outlined in Fig. 5. In cases of severe weather, 
the causative factor, which is based on its ability to have 

an impact, is largely constant (the five factors outlined in  
Fig. 4). Conversely, the vulnerability of the affected 
population is contingent upon the extent of their exposure. 
Graded impact warning systems play a crucial role in the 
management of population vulnerability and exposure by 
providing a means to estimate the amount of impact. The 
causative factor, which is based on the potential for impact, 
is relatively constant in cases of severe weather events. 
Conversely, the vulnerability of the affected population is 
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contingent upon the degree of exposure. The implementation 
of impact-graded warning systems plays a crucial role in 
effectively managing and mitigating people’s exposure to 
various causative factors. Therefore, comprehending the 
detrimental effects of various meteorological phenomena is 
crucial for effectively mitigating natural disasters like floods. 
Based on the matrix presented in Fig. 3, the quantification of 
the graded impacts (0-green, 1-yellow, 2-orange, and 3-red) 

at four levels was carried out. by following the standard 
operating procedure of the India Meteorological Department, 
India (IMD, Ministry of Earth Sciences 2021).

The current work uses machine learning techniques 
to create a decision tree model whose goal is to figure 
out the best level of graded warning issue when there is 
heavy rain and the impact systems that go with it. The local 
administrative body has used the precise graded warning to 

Fig. 3: Level of impacts and associated matrix (quantification of the graded impacts: 

0-green, 1-yellow, 2-orange, and 3-red). 

Fig. 3: Level of impacts and associated matrix (quantification of the graded impacts: 0-green, 1-yellow, 2-orange, and 3-red).
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The current work uses machine learning techniques to create a decision tree model 

whose goal is to figure out the best level of graded warning issue when there is heavy 

rain and the impact systems that go with it. The local administrative body has used the 

precise graded warning to evaluate the extent of damage and potential threats resulting 

from the occurrence of heavy rainfall. The levels of impacts of flood assessment include 

the examination of existing crops, the assessment of damage to residential structures, 

the appraisal of population evacuation measures, and the analysis of casualties 

(presented in Fig. 4). 

 
Fig. 4: Objective criteria (methodology) used for the quantification of the graded warning system (0-green, 1-yellow, 2-orange, and 3-red) for the 

studied areas.
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evaluate the extent of damage and potential threats resulting 
from the occurrence of heavy rainfall. The levels of impacts 
of flood assessment include the examination of existing 
crops, the assessment of damage to residential structures, 
the appraisal of population evacuation measures, and the 
analysis of casualties (presented in Fig. 4).

The proposed model exhibits considerable potential for 
utilization and possesses substantial value in terms of its 
practicality. Fig. 5: is a graph that shows the steps that were 
used to make the machine learning-based multiclassification 
algorithm that was used in the dynamic impact-based heavy 
rainfall prediction system. The steps included finding 
historical impact data, quantifying the exposure data, training 
the multiclassification algorithms, etc.

Multi-Classification Algorithm(M\L) 

Machine learning, a branch within the broader domain of 
artificial intelligence, has become a focal point for addressing 
the challenges of digitalization, attracting significant attention 
within the digital realm. In this study, the multiclassification 
of the assessment and prediction of the impacts of heavy 
rainfall was conducted using four machine learning models: 
Support Vector Machines (SVM), Decision Trees (DT), 
k-Nearest Neighbors (KNN), and Naive Bayes (NB). 

Support Vector Machine 

Support Vector Machines (SVM) are capable of handling 
difficulties including classification as well as regression. 
The decision boundary in this approach is a hyperplane, 
which must be determined. A decision plane is necessary 
to divide a set of objects into their respective classes when 

there are several classes represented. Separating items 
into their respective classes may or may not need complex 
mathematical functions known as kernels if the objects are 
not linearly separable. SVM attempts to correctly classify 
objects based on examples in the training data set. The 
benefits of support vector machines (SVM) include: They 
work well with semi-structured and structured data, and they 
can even deal with complex functions if the right kernel 
function is generated. Overfitting is reduced by SVM’s 
reliance on generalization.

This method works well with high-dimensional data 
and scales well. Local minima are not a problem for it. The 
longer it takes to train an SVM, the less well it performs 
with more data. An adequate kernel function will be hard 
to locate. When the dataset is noisy, SVM performs poorly. 
If there are a lot of features and observations, then SVM is 
worth a go (Ray 2019).

Decision Tree

Decision trees are supervised machine learning that can 
be used to resolve classification and regression issues by 
continually separating data based on certain parameters. 
The leaves are where the decisions are made, whereas the 
nodes are where the data is divided up. In multiclassification 
decision variable is graded. The decision in the leaves and the 
data split in the nodes. The benefits of using a Decision Tree 
include its adaptability to both regression and classification 
problems, its straightforward interpretation, its ability to 
handle both quantitative and qualitative values, its capacity 
to fill missing values in attributes with the most likely value, 
and its high-performance thanks to the efficiency of its tree-

Fig. 4: Objective criteria (methodology) used for the quantification of the graded 

warning system (0-green, 1-yellow, 2-orange, and 3-red) for the studied areas. 

The proposed model exhibits considerable potential for utilization and possesses sub-

stantial value in terms of its practicality. Fig. 5: is a graph that shows the steps that 

were used to make the machine learning-based multiclassification algorithm that was 

used in the dynamic impact-based heavy rainfall prediction system. The steps in-

cluded finding historical impact data, quantifying the exposure data, training the mul-

ticlassification algorithms, etc. 

 

Fig. 5: Process block diagram of dynamic impact-based prediction system. 
Fig. 5: Process block diagram of dynamic impact-based prediction system.
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traversal algorithm. Over-fitting is an issue that can arise with 
Decision trees, but it can be remedied with the help of the 
ensemble modeling approach that Random Forest employs. 
it can be unstable, it’s not always easy to regulate the tree’s 
size, it’s vulnerable to sampling error, and it only provides 
a locally optimal solution, not the best possible one.

Naïve Bayes

This algorithm relies on conditional probability and is 
therefore easy to implement. In this approach, training data 
is used to define a probability table that serves as the model. 
The “probability table” uses feature values to anticipate fresh 
observations by looking up class probabilities. Predicting a 
new observation requires consulting a “probability table” 
whose columns include the feature values and whose rows 
contain the class probabilities. The term “naive” refers to the 
underlying premise of conditional independence. Taking into 
account all input features as though they were unrelated to 
one another is unrealistic in practice.

The benefits of Naive Bayes (NB) include straightforward 
implementation; high performance; use of a smaller sample 
of training data; linear scalability in terms of predictors 
and data points; the ability to deal with both continuous 
and discrete data; the capability to deal with multi-class 
classification problems; and the ability to make probabilistic 
predictions. Both continuous and discrete data types are 
supported. It has a low sensitivity to non-essential details. 
Properly trained and optimized models typically outperform 
NB models because NB models are overly simplistic. It 
is challenging to directly apply Naive Bayes if one of the 
features must be a “continuous variable,” such as time. While 
“buckets” can be created for “continuous variables,” they are 
not always accurate.

Because there is no genuine online form of Naive Bayes, 
all data must be retained for retraining the model. For a large 
enough number of classes, say above 100,000, it will not 
scale. It requires more memory at runtime for prediction 
than support vector machines or standard logistic regression. 
High-end central processing unit (CPU), especially for 
complex models with lots of variables.

K Nearest Neighbour Algorithm (KNN)

It is an example of a classification method. The 
algorithm(KNN) uses a database partitioned into classes 
into which it must place a single sample data point and 
solve the ensuing classification problem. It is said that KNN 
is non-parametric since it does not make any assumptions 
about the underlying data distribution. It’s a straightforward 
method with easy implementation. It’s an adaptable system 
that works well with multi-modal classification. Several 

category tags appear in the record set. The rate of error is 
no more than twice the Bayes error rate. In some cases, this 
is the most effective technique. 

Multi Classification  Performances Metrices

Classification is a commonly used technique in data analysis 
that involves the categorization of data into more than 
two categories. While the traditional approach involves 
the separation of data into two groups, known as binary 
classification, it is also possible to extend this method 
to encompass more than two groups, which is known as 
multi-class classification. From an algorithmic perspective, 
(Mohandes et al. 2018) discuss how the prediction process 
is dependent on advanced mathematical techniques. These 
methodologies employ the provided input data (represented 
by the x variables) to provide precise predictions for the 
outcome variable y. Given that y is a variable that can 
take on values from 1 to K, where each value represents a 
unique class, it is possible to see both the response variable 
y and the prediction (y-hat) as discrete random variables 
in the context of multi-class classification. The algorithm 
calculates the probability that a given unit is a member of a 
particular class and subsequently utilizes a classification rule 
to allocate each unit to one of these classes. In general, the 
rule is characterized by its simplicity: an object is allocated 
to the category that exhibits the greatest probability. In the 
context of employing a classification model, it is possible to 
make estimations regarding the probability of membership 
for each potential unit inside a given class. In the context of 
a binary classification task, it is customary to use a threshold 
value to determine the appropriate class prediction for each 
instance while taking the model’s probability output into 
account (Grandini et al. 2020).

Confusion Matrix: The confusion matrix is a cross table 
that keeps track of the frequency with which the true/actual 
classification differs from the expected classification( Fig. 6). 

The details of the performance metrics used in this 
research article are presented in Table 3.

RESULTS AND DISCUSSION

This section focuses on assessing the efficacy of the 
quantification of causative factors contributing to floods in 
North Bihar. Additionally, it examines the effectiveness of 
a proposed multi-classification algorithm in categorizing 
the impact of floods in the districts of West Champaran, 
Darbhanga, and Vaishali in the studied areas. The selection 
of these districts was made by considering the geographical 
settings and the diverse factors associated with floods 
in these areas. The implementation code was developed 
using Python 3.10. A machine learning model for simple 
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the context of a binary classification task, it is customary to use a threshold value to 

determine the appropriate class prediction for each instance while taking the model's 

probability output into account (Grandini et al. 2020).  

Confusion Matrix: The confusion matrix is a cross table that keeps track of the fre-

quency with which the true/actual classification differs from the expected classifica-

tion( Fig. 6).  

 

Fig. 6: Schematic of Confusion Matrix on the test datasets. 

The details of the performance metrics used in this research article are presented in 

Table 3. 

Performance Metrics Remarks 

Fig. 6: Schematic of Confusion Matrix on the test datasets.

Table 3: Details of the performance matrices used in the assessment of multiclassification ML approaches.

Performance Metrics Remarks
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It is the average value of recall of each class. How likely is it that an 
individual of that class will be classified correctly? The recall value for 
each class response. Therefore, balanced accuracy provides a class-
general mean measure of this idea.
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Since the numerators of Macro Average Precision and Macro Average 
Recall are composed of values in the range [0, 1], macro-average 
methods often compute an overall mean of several metrics. There is 
no correlation between class size and the denominator because classes 
of varying sizes are counted the same. This means that the influence 
of the largest classes is just as significant as that of the smallest. 
High Macro-F1 values suggest that the method performs well across 
all classes, while low Macro-F1 values show classes that are poorly 
predicted by the system.
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Macro F1-Score is an average measurement of the classes’ average 
precision and average recall. This metric is calculated at the class level 
so that each class receives equal weight. Small classes are equivalent 
to large ones, and algorithm performance regardless of class size is of 
equal importance.
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k|X

i
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Cross-entropy values of the individual units to derive a measure of 
agreement for the entire dataset. Cross-entropy exploits only the value 
of p(Yˆ i = k|Xi) for the k value representing the true class.

multiclassification was implemented on a laptop running 
the Windows 11 operating system. The laptop is equipped 
with an Intel (R) Core (TM) i5-1035G1 processor working 
at a frequency of 1.00 GHz and has 8 GB of memory. The 

specifics regarding the datasets are outlined in Section 2. 
The process of the proposed methodologies is outlined in 
subsection 3.1, and the subsequent optimal hyperparameters 
are presented in Table 4.
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Quantification of Causative Factors of The Impact  
of Floods

The studied areas, i.e., districts of North Bihar, lie in the 
basins of the Gandak, Bagmati/Adhawara, and Kosi/
Mahananda groups of rivers, which are prone to flooding. 
The catchments of the Gandak, Bagmati/Adhawara, and 
Koshi/Mahananda rivers are located in the mountainous 
central and eastern regions of Nepal (presented in Fig. 1). 
Consequently, any amount of rainfall in adjoining Nepal, 
even if it is of moderate quantity, leads to an increase in the 
water level of these river systems. Depending on the varying 
capacity of the rivers, floods occur in the downstream areas. 
The river system mentioned in this study causes flooding in 
the lowlands of northern Bihar, India, when it traverses the 
border from Nepal, where the terrain is steeper (Shankar 
et al. 2022). The steep topography of the region leads to 
sudden or flash floods in the downstream districts of North 
Bihar during periods of excessive rainfall in neighboring 
Nepal. Therefore, it is seen that floods can occur in the 
lowlands of Bihar even in the absence of significant in-situ 
rainfall. To establish a comprehensive warning system 
for heavy rainfall-induced floods, our objective is to 
uncover the underlying elements that contribute to these 
impacts. The assessment of impacts has been derived from 
historical data about several factors, including the loss of 
human lives, displacement of communities, destruction of 

residential structures, and losses to crops. This technique is 
derived from the discussion in Fig. 4, which focuses on the 
quantification of the graded warning system. The objective of 
this approach is to verify that the graded warning aligns with 
the probability of potential impacts. The inputs for this study 
include various causative factors, such as the river gauges 
at different locations, which may be influenced by rainfall 
in neighboring regions of Nepal. Additionally, the average 
aerial precipitation response for water runoff and district 
rainfall are also considered. As shown in Fig. 5, these inputs 
come with the corresponding time data. The details of these 
elements have been assessed for each district. This study 
presents an assessment of three districts from the perspective 
of rational representation. A comprehensive examination 
of three districts, namely West Champaran, Vaishali, and 
Darbhanga, is presented in the following subsection. West 
Champaran is situated in the higher catchment area of the 
river, while Vaishali encompasses both the lower catchment 
area of the river and the region affected by the Ganga River. 
Lastly, Darbhanga is a district prone to flooding. This section 
focuses on the evaluation of the quantification of causative 
factors contributing to floods in North Bihar. It also checks 
how well a suggested multi-classification algorithm sorts the 
graded impact-based flood warning system or the dynamic 
impact-based vulnerability assessment works in the districts 
of Darbhanga, Vaishali, and West Champaran. The selection 
of these districts took into account their geographical settings 

this area. The primary cause of these floods may be attributed to the substantial precip-

itation in the Soemshwar Doon region. According to (Jha & Gundimeda 2019), the 

district experiences floods very frequently, with a frequency of 0.8 to 1. The districts 

exhibit a north-to-south slope, whereas the canal runs in an east-to-west direction. This 

configuration leads to congestion in the canal's capacity at peak events. Nevertheless, 

due to the topography, the floodwaters dissipated swiftly. Fig. 7 displays the correlation 

matrix between the input attributes and the effects. The correlation coefficients of 0.8 

for rainfall and 0.75 for AAP clearly show a strong correlation between heavy rainfall 

and its effects. This relationship is further supported by the data collected from the river 

gauges located at Triveni and Khadda, which are situated close to the border with Ne-

pal. 

 

Fig. 7: The correlation matrix of the impacts of heavy rainfall with its causative feature in the districts of West Champaran, Bihar, India.
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and the diverse factors associated with floods in these  
areas.

West Champaran

The districts of West Champaran hold the distinction of 
being the largest in Bihar in terms of their geographical 
expanse. It is noteworthy that flash floods frequently 
affect this area. The primary cause of these floods may be 
attributed to the substantial precipitation in the Soemshwar 
Doon region. According to (Jha & Gundimeda 2019), the 
district experiences floods very frequently, with a frequency 
of 0.8 to 1. The districts exhibit a north-to-south slope, 
whereas the canal runs in an east-to-west direction. This 
configuration leads to congestion in the canal’s capacity 
at peak events. Nevertheless, due to the topography, the 
floodwaters dissipated swiftly. Fig. 7 displays the correlation 
matrix between the input attributes and the effects. The 
correlation coefficients of 0.8 for rainfall and 0.75 for AAP 
clearly show a strong correlation between heavy rainfall 
and its effects. This relationship is further supported 
by the data collected from the river gauges located at 
Triveni and Khadda, which are situated close to the border  
with Nepal.

Darbhanga

According to (Jha & Gundimeda 2019), the Darbhanga 
districts are classified as having a high frequency of floods, 
with a range of 0.6 to 0.8. The river group Bagmati/Adhawra 
is responsible for the floods in these two districts. Blocks 
such as Kusheshwar Asthan, Hayafghat, Jale, and others 
are susceptible to flooding. The duration of the flood is 
characterized as mild since the water recedes within a 
timeframe of around one to two weeks. The study conducted 
by (Kumar et al. 2016) examines the progress made in the 
regions affected by the significant flooding incidents. Fig. 8: 
displays the correlation matrix, illustrating the relationships 
between the impacts of the districts and the input attributes. 
The data indicates a strong correlation between severe 
rainfall impacts and the average rainfall (0.85) in the districts, 
as well as the average annual precipitation (AAP) (0.75) in 
the adjacent catchments, in conjunction with the river gauges 
at Benibad.

Vaishali

Flood-prone areas are often located in the downstream regions 
of the Ganga River, and the Vaishali district is categorized 

 

Fig. 8: The correlation matrix of the impacts of heavy rainfall with its causative fea-

ture in the districts of Darbhanga, Bihar, India. 

Vaishali 

Flood-prone areas are often located in the downstream regions of the Ganga River, and 

the Vaishali district is categorized as one such area where flooding is mostly attributed 

to the combined influence of two river systems, namely the Ganga and the Gandak. 

Typically, amid the monsoon season, the lower regions known as Diyara have regular 

occurrences of flooding. According to (Jha & Gundimeda 2019), the district is within 

the range of medium flood frequency, namely between 0.4 and 0.6. The drainage pro-

cess of floods in this district is often characterized by a prolonged duration. Fig. 9: 

displays the correlation matrix, illustrating the relationships between the districts' im-

pacts and the input attributes. The data indicates a strong correlation between severe 

Fig. 8: The correlation matrix of the impacts of heavy rainfall with its causative feature in the districts of Darbhanga, Bihar, India.
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rainfall impacts and the average rainfall (0.82) in the districts, as well as the average 

annual precipitation (AAP) (0.65) in the connected catchments, in addition to the river 

gauges at Khadda (0.25) and Triveni (0.24).  

 

Fig. 9: The correlation matrix of the impacts of heavy rainfall with its causative fea-

ture in the districts of Vaishali, Bihar, India. 

Assessment of the Proposed M/L Multiclassification Models 

The performance indicators outlined in paragraph 3.3 were employed to assess the ef-

fectiveness of the proposed machine learning multiclassification models. The models 

were evaluated for four consecutive days: day 0, day 1, day 2, and day 3. The inputs 

used for each evaluation were based on the characteristics of the corresponding day or 

Fig. 9: The correlation matrix of the impacts of heavy rainfall with its causative feature in the districts of Vaishali, Bihar, India.

as one such area where flooding is mostly attributed to the 
combined influence of two river systems, namely the Ganga 
and the Gandak. Typically, amid the monsoon season, the 
lower regions known as Diyara have regular occurrences of 
flooding. According to (Jha & Gundimeda 2019), the district 
is within the range of medium flood frequency, namely 
between 0.4 and 0.6. The drainage process of floods in this 
district is often characterized by a prolonged duration. Fig. 9: 
displays the correlation matrix, illustrating the relationships 
between the districts’ impacts and the input attributes. The 
data indicates a strong correlation between severe rainfall 
impacts and the average rainfall (0.82) in the districts, as 
well as the average annual precipitation (AAP) (0.65) in 
the connected catchments, in addition to the river gauges at 
Khadda (0.25) and Triveni (0.24). 

Assessment of the Proposed M/L Multi-classification 
Models

The performance indicators outlined in paragraph 3.3 
were employed to assess the effectiveness of the proposed 
machine learning multi-classification models. The models 
were evaluated for four consecutive days: day 0, day 1, 
day 2, and day 3. The inputs used for each evaluation were 

based on the characteristics of the corresponding day or the 
preceding days. The grid search methodology is employed to 
refine and optimize the selection of hyperparameters. Table 
4 displays the ideal hyperparameters for the Decision Tree 
(DT), K-Nearest Neighbors (KNN), and Support Vector 
Machine (SVM) models that were trained in the districts of 
West Champaran, Darbhanga, and Vaishali. These districts 
are representative of the northern region of Bihar. The change 
of hyperparameters is deemed unnecessary for the Naïve 
Bayes multi-classification approach. The observed variation 
in the quantity of hyper parameterized parameters throughout 
the districts of northern Bihar can be ascribed to disparities 
in the number of input features and the heterogeneous 
attributes of floods. 

The performance metrics from subsection 3.3 were 
used to rate the trained models. The results can be seen in  
Table 5 (Decision Tree and Support Vector Machine models) 
and Table 6 (KNN and Naïve Bays models).

To build an efficient early warning system and a thorough 
vulnerability assessment that considers the diverse causes 
of floods (Zhang et al. 2022), This methodology employs 
an innovative machine learning technique for multi-
classification, which effectively combines diverse sources 
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of both heterogeneous and homogeneous information. 
The implementation of this improvement resulted in the 
enhancement of the current early warning system while also 
enabling the retention of a greater quantity of information 
during the fusion process. The individual who bears the 
responsibility for decision-making holds the capacity to 

evaluate the sources and extent of consequences, which 
might serve as important considerations for those tasked 
with disaster management. The Naïve Bayes algorithms 
exhibit noteworthy performance in the districts of West 
Champaran, achieving a balanced accuracy of 0.88, which 
closely approaches the ideal value of 1. Furthermore, it can be 

Table 4: Best Hyperparameter of the Decision Tree, SVM, and KNN Multi classification algorithms for the proposed dynamic impact-based multi-clas-
sification algorithms for the districts of West Chamapran, Darbhanga, and Vaishali.

Algorithm/
Best 
Parameter

 Decision Tree SVM KNN

max_
depth

min_
samples_leaf

min_samples_
split

C coef0 degree gamma kernel n_
neighbors

p weights

West 
Champaran

3 2 2 0.1 -1 1 0.01 poly 3 1 distance

Darbhanga 3 1 5 10 -1 5 0.0001 poly 9 2 uniform

Vaishali 10 1 2 10 1 5 scale poly 7 2 distance

Table 5: Presentation of performance metrics for the day (0–3) for DT and SVM.

Decision Tree Multi Classifier

District(Days)/
Performance 
Parameter

West Champaran Darbhanga Vaishali

Day0 Day1 Day2 Day3 Day0 Day1 Day2 Day3 Day0 Day1 Day2 Day3

Balanced Accuracy 0.7287 0.7287 0.7287 0.7287 0.8068 0.8068 0.8068 0.7840 0.7174 0.6787 0.6816 0.6758

Binary Cross Entropy 2.1128 2.1128 2.1128 2.1128 0.0688 0.0688 0.0688 0.0741 3.656 3.9177 3.6566 4.1789

Macro F1 Score 0.71 0.71 0.71 0.71 0.80 0.80 0.80 0.77 0.58 0.56 0.57 0.54

Micro Weighted F1 
Score

0.85 0.85 0.85 0.85 0.96 0.96 0.96 0.96 0.90 0.89 0.89 0.88

Support Vector Machine

Balanced Accuracy 0.5729 0.5729 0.5729 0.5729 0.6717 0.6717 0.6717 0.6717 0.7412 0.7412 0.7412 0.5729

Binary Cross Entropy 0.3973 0.3782 0.3880 0.3847 0.5910 0.6063 0.6049 0.6067 0.2364 0.2522 0.2516 0.3847

Macro F1 Score 0.61 0.61 0.61 0.61 0.64 0.64 0.64 0.64 0.60 0.60 0.60 0.61

Micro Weighted F1 
Score

0.74 0.74 0.74 0.74 0.94 0.94 0.94 0.94 0.91 0.91 0.91 0.74

Table 6: Presentation of performance metrics for the day (0–3) for KNN and  Naïve Bays.

KNN

District(Days)/
Performance 
Parameter

West Champaran Darbhanga Vaishali

Day0 Day1 Day2 Day3 Day0 Day1 Day2 Day3 Day0 Day1 Day2 Day3

Balanced Accuracy 0.6875 0.6875 0.6875 0.6875 0.6489 0.6489 0.6489 0.6489 0.8662 0.8662 0.8662 0.8662

Binary Cross Entropy 2.9199 2.9199 2.9199 2.9199 0.1380 0.1380 0.1380 0.1380 0.1662 0.1662 0.1662 0.1662

Macro F1 Score 0.65 0.65 0.65 0.65 0.63 0.63 0.63 0.63 0.87 0.87 0.87 0.87

Micro Weighted F1 
Score

0.85 0.88 0.88 0.88 0.93 0.93 0.93 0.93 0.94 0.94 0.94 0.94

Naïve Bays Classifier

Balanced Accuracy 0.8849 0.8849 0.8849 0.8849 0.7030 0.7030 0.7030 0.7030 0.5478 0.5478 0.5478 0.5478

Binary Cross Entropy 0.4672 0.4672 0.4672 0.4672 0.7065 0.7065 0.7065 0.7065 0.334 0.334 0.334 0.334

Macro F1 Score 0.84 0.84 0.84 0.84 0.60 0.60 0.60 0.60 0.55 0.55 0.55 0.55

Micro Weighted F1 
Score

0.90 0.90 0.90 0.90 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84
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observed that the decision tree multi-classification algorithms 
exhibit a high level of effectiveness, ranking as the second 
most efficient models. One significant advantage of utilizing 
balanced accuracy is its fair assessment of all classes, which 
is especially important when dealing with imbalanced 
datasets that have significant differences in sample 
numbers between classes. Furthermore, the macro F1 score 
demonstrates a significant degree of efficacy when employed 
in conjunction with the naive Bayes multi-classifier. The 
ability to punish the model severely when it shows excessive 
confidence in an incorrect class is one of the benefits of 
using binary cross entropy. As a result, this contributes to 
improving the accuracy of the model. In the context of the 
Naive Bayes classifier, when the value tends towards 1, it 
signifies a desirable level of performance. In the districts of 
West Champaran, it is evident that the algorithms operate in 
the following sequence: The performance of Naive Bayes is 
seen to be the greatest, followed by Decision Tree, K-Nearest 
Neighbors (KNN), and Support Vector Machine (SVM). 
In the context of the Darbhanga districts, the performance 
of multiclassification algorithms may be rated as follows: 
The performance of the Decision Tree surpasses that of the 
Support Vector Machine (SVM), which in turn surpasses that 
of K-Nearest Neighbors (KNN), while Naive Bayes exhibits 
the least effective performance. In the Vaishali areas, where 
the possible ramifications of floods may be ascribed to the 
combined impacts of the Gandak and Ganga river systems, 
the algorithms can be hierarchically ordered based on their 
efficacy as follows: The K-Nearest Neighbors (KNN) 
algorithm has the highest level of effectiveness, followed by 
Support Vector Machines (SVM), Decision Trees (DT), and 
Naive Bayes (NB). Consequently, a thorough assessment was 
undertaken to evaluate the performance of several machine 
learning algorithms for multi-classification, to examine their 
effectiveness concerning the proposed methodologies. The 
comprehensive assessment of available sources is crucial 
to effectively enable the actual application of models in the 
field. The present study investigates the possible use of big 
data technologies in the evaluation of flood risk, as stated 
in the work of (Monrat et al. 2019). Furthermore, this study 
examines the practical use of graded impact-based warning 
systems in the context of severe rainfall events. The study also 
examines the issues that require attention and the tactics that 
must be implemented to effectively harness the capabilities 
of these technologies. The performance metrics outlined in 
paragraph 3.3 were employed to assess the effectiveness of 
the proposed machine learning multiclassification models. 
The models underwent evaluation for four consecutive 
days: day 0, day 1, day 2, and day 3. The evaluation process 
involved using input characteristics from the same day for 
day 0, while for subsequent days (day 1, day 2, and day 3), 

inputs from prior days were used. The grid search method 
is employed to refine the optimal hyperparameterization. 
Table 4 displays the best hyperparameters for the Decision 
Tree (DT), K-Nearest Neighbor (KNN), and Support Vector 
Machine (SVM) models that were trained using data from the 
districts of West Champaran, Darbhanga, and Vaishali. There 
is no need for hyperparameter changes in the Naïve Bayes 
multiclassification approach. The observed heterogeneity in 
the quantity of hyperparametrized parameters throughout the 
districts of northern Bihar may be ascribed to the disparities 
in the number of input features and the distinct attributes of 
floods in these regions.

Different multiclassification methods behave in different 
ways, especially when they are given datasets that aren’t 
balanced and have a big difference in the number of cases 
in each class. The aforementioned disparity has the potential 
to result in models that exhibit bias and demonstrate inferior 
performance when it comes to underrepresented classes. To 
solve these challenges, a range of strategies are utilized.  In 
this article, the Synthetic Minority Oversampling Technique 
(SMOTE) is employed to handle unbalanced datasets by 
producing synthetic samples for the minority class. The 
generation of synthetic examples is achieved by the process 
of interpolating between pre-existing cases, effectively 
equalizing the distribution of classes. Also, stratified cross-
validation is employed to guarantee that every fold inside the 
cross-validation procedure maintains an equitable distribution 
of all classes. This methodology facilitates the assessment of 
the model’s efficacy by ensuring that each class is equally 
represented. In our forthcoming stages, we intend to augment 
the efficacy of our models by capitalizing on the benefits 
of sophisticated methodologies, such as Easy-Ensemble 
or Balanced Random Forest. The efficacy of the presented 
models is contingent upon the caliber of previous flood impact 
data and the fundamental causal elements. The success of 
multiclassification models relies heavily on the presence 
of high-quality data. The incorporation of continuous input 
from real-time datasets is crucial to maintaining the real-
time correctness of these models. Moreover, the precision 
and dependability of historical data play a crucial role in 
efficiently training the models. The outcomes derived from 
these models offer significant insights into the quantification of 
the economic implications associated with varying degrees of 
warning accuracy. This evaluation encompasses the estimation 
of possible cost savings that may arise as a consequence of less 
damage and improved procedures for disaster preparedness.

CONCLUSION

The primary aim of this research is to improve our 
understanding of flood risk categorization and the impact 
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of individual or combined causative elements through the 
development of innovative ML approaches. The study sites 
were chosen from places located in northern Bihar, India, 
which are susceptible to frequent occurrences of flooding. 
The geography of the North Bihar region and its adjacent 
Tarai territories is characterized by a significant incline. 
Consequently, the development of an impact-based flood 
warning system in these regions necessitates consideration of 
the combined impacts of in-situ and runoff rainfall, as well as 
the overflow of rivers and associated canal systems. A novel 
machine learning approach has been devised to improve 
comprehension and communication regarding the diverse 
degrees of impacts of flood consequences arising from 
rainfall, average aerial precipitation in nearby catchment 
areas, and rises in river gauges due to rainfall in neighboring 
regions of Nepal. To accomplish this goal, we utilized a 
modeling methodology to evaluate the quantification of 
floods resulting from several causative factors. The utilization 
of multi-classification ML classifiers in tandem enhances the 
decision-making process by capitalizing on the collective 
proficiency of the machine learning algorithms. The tools 
that have been suggested aim to improve decision-making 
in the context of operational impact-based forecasting. 
Furthermore, this approach maximizes the likelihood of 
both over- and under-warnings. The ML models under 
consideration are evaluated in terms of their performance 
relative to the base models, to identify the optimal model 
that exhibits robustness in the presence of variations. The 
main objective of these proposed tools is to assist operational 
forecasters by generating a classification of flood impacts 
as a result. Hence, the executive line agency operates to the 
specific requirements of the situation, allocating resources 
as necessary to minimize the effects of flooding. This 
paper presents a conceptual framework for evaluating the 
dynamic consequences of intense precipitation, incorporating 
several additional contributing components. The suggested 
framework has the potential to be implemented in many 
geographical areas to improve flood management tactics. The 
presented model will be employed in further investigations 
to examine several facets of compound runoff and rainfall-
induced flooding. While this study acknowledges the 
important influence of other contributing factors, such as land 
use and land cover, on impact-based flooding occurrences 
within the relevant period, it does not quantify their effects. 
Future research endeavors should prioritize the exploration of 
the integration of these components. However, the potential 
for intensified rainfall as a result of climate change might 
significantly amplify the likelihood of flooding in the area 
under study. Future evaluations employing this model aim 
to quantitatively evaluate the influence of altering climatic 
conditions on the susceptibility to flooding.
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