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ABSTRACT

Scholars have turned their attention to the ecological protection and high-quality development 
of China’s Yellow River Basin in recent years. The basin is a major agricultural production area in 
China, hence investigating agricultural carbon emission reduction strategies in the basin is crucial. 
The research object in this article is the agricultural departmen.ts of China’s nine provinces in the 
Yellow River Basin from 2005 to 2018. Agricultural carbon emissions are measured using agricultural 
land usage, rice planting, crop planting, straw burning, and livestock breeding as agricultural carbon 
sources. In addition, the GTWR model is used to examine the spatiotemporal aspects of the impact of 
five factors on agricultural carbon emissions in this paper. The findings reveal that the five factors have 
varying degrees and directions of influence.

INTRODUCTION 

The human ecological ecosystem has been seriously harmed 
in recent years. Excessive carbon emissions exacerbate the 
greenhouse effect, causing the average temperature of the 
earth’s surface to rise, resulting in catastrophic effects such 
as glacier melting and sea-level rise. The global temperature 
might rise by 1.5°C in the next 30 years (IPCC 2018). As 
a result, lowering carbon emissions is critical. Although 
the carbon emissions of the industrial and service sectors 
considerably outnumber those of other sectors, agriculture’s 
rapid growth also generates a significant amount of carbon 
emissions. China’s agricultural greenhouse gas emissions, 
as a significant agricultural country, contributed to a rising 
proportion of global total emissions. The percentage was as 
high as 13.07% in 2016 (FAO 2021). As a result, China’s 
efforts to minimize agricultural carbon emissions are critical. 

Scholars are increasingly delving into the topic of agricul-
tural carbon emissions. This article categorizes the literature 
based on three factors.

To begin, scholars have a variety of options when it comes 
to agricultural carbon emissions sources. Some academics 
define agriculture in a very narrow way, referring just to 
the planting sector (Wang et al. 2015). They are primarily 
interested in the carbon emissions caused by agricultural 

land use. Pesticides, chemical fertilizers, agricultural plastic 
films, fossil fuels, electricity, and ploughing were chosen as 
agricultural carbon sources by Lu et al. (2018) and Zhou et al. 
(2021). Han et al. (2018), Cui et al. (2021), and Huang et al. 
(2019) added rice planting, straw burning, and crop planting 
to the list of sources, respectively. Agriculture is also defined 
in a broad sense by some researchers, which includes animal 
husbandry (Xiong et al. 2016, Guo et al. 2021).

Secondly, scholars have studied the influencing factors 
from various aspects, such as agricultural production (Owusu 
& Asumadu-Sarkodie 2017), agricultural mechanization 
(Ismael et al. 2018), agricultural opening (Cui et al. 2018), 
rural population (Chen et al. 2018), land use area (Zhao et al. 
2017), energy consumption (Zhang et al. 2019), urbanization 
(Ridzuan et al. 2020), agricultural technological progress 
(Chen et al. 2019) and agricultural industrial structure (Guo 
et al. 2021).

Thirdly, scholars will adopt different methods according 
to different purposes and data characteristics to study in-
fluencing factors. As for time series, scholars often use the 
autoregressive distributed lagged (ARDL) model (Saboori 
et al. 2016) and the ordinary least squares (OLS) model 
(Danish et al. 2017). As for panel data, scholars often use 
the fixed effects (FE) model (Nassani et al. 2017). To solve 
the endogenous problem, some scholars use the generalized 
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method of moments (GMM) model (Qureshi et al. 2017). In 
addition, some researchers have begun to take into account 
the regional variability of contributing factors, opting for a 
geographically weighted regression (GWR) model (Wang & 
Zhang 2020). Some researchers use the geographically and 
temporally weighted regression (GTWR) model to analyze 
elements that are spatially and temporally heterogeneous 
(Chen et al. 2019). 

The Yellow River, the second-longest river in China, with 
a length of about 5,464 kilometers and a drainage area of   
about 752,443 square kilometers, is dominated by dryland 
agriculture. This paper selects nine provinces (autonomous 
regions) including Shanxi, Inner Mongolia, Shandong, He-
nan, Sichuan, Shaanxi, Gansu, Qinghai, and Ningxia in the 
basin as the study area. Agriculture in the nine provinces 
increased fast between 2005 and 2018, resulting in a large 
number of carbon emissions. As a result, understanding 
the factors that influence agricultural carbon emissions in 
the nine provinces is critical to the Yellow River Basin’s 
biological ecosystem.

In summary, selecting nine provinces in the Yellow River 
Basin as the research area, this paper chooses agricultural 
land use, rice planting, crop planting, straw burning, and 
livestock breeding as agricultural carbon sources, and 

estimates the agricultural carbon emissions of the basin from 
2005 to 2018. And then appropriate influencing factors are 
chosen to analyze the spatiotemporal characteristics based 
on the GTWR model.

MATERIALS AND METHODS

Estimation of Agricultural Carbon Emissions

Carbon emissions from agricultural land use: The carbon 
sources, coefficients, and references are shown in Table 
1. The six-carbon sources are measured by the amount of 
pesticides, agricultural fertilizers, agricultural plastic film, 
agricultural diesel fuel, the effective irrigation area, and the 
total sown area of crops.

Carbon emissions from rice planting: This research 
relates to Min et al. (2012)’s study, which considers the CH4 
emission coefficients of different types of rice in different 
regions, as indicated in Table 2 to assess carbon emissions 
from rice cultivation. The yields of early rice (ER), late rice 
(LR), and in-season rice (IR) in each region are measured 
by their sown area.

Carbon emissions from crop planting: During the process 
of crop planting, the soil will emit N2O. This paper refers to 

Table 1: The agricultural land use carbon source coefficients and references.

Source Coefficient Reference

Pesticides 4.9341kg CE.kg-1 Oak Ridge National Laboratory

Fertilizers 0.8956kg CE.kg-1 Oak Ridge National Laboratory

Agricultural Film 5.1800kg CE.kg-1 Institute of Agricultural Resources and Ecological Environment, Nanjing Agricultural University

Diesel fuel 0.5927kg CE.kg-1 IPCC

Irrigation 20.4760kg CE.hm-2 Dubey and Lal (2009)

Plowing 312.6000kg CE.km2 College of Biology and Technology, China Agricultural University

Table 3: N2O emission coefficients of various crops (kg.hm-2).

Crop Coefficient Crop Coefficient

Rice 0.24 Corn 2.532

Spring Wheat 0.4 Vegetables 4.944

Winter Wheat 1.75 Other Upland Crops
(Potato, Peanut, Rapeseed, Cotton, Sugar cane, Beet)

0.95

Soybean 2.29

Table 2: CH4 emission coefficients of rice in nine provinces of the Yellow River Basin (g.m-2).

Province ER LR IR Province ER LR IR Province ER LR IR

Shanxi 0 0 6.62 Henan 0 0 17.85 Gansu 0 0 6.83

Inner Mongolia 0 0 8.93 Sichuan 6.55 18.5 25.73 Qinghai 0 0 0

Shandong 0 0 21 Shaanxi 0 0 12.51 Ningxia 0 0 7.35
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the study of Min et al. (2012), and considers the N2O emis-
sion coefficients of different types of crops, as shown in Table 
3. The yield of various crops is measured by their sown area.

Carbon emissions from straw burning: Straw burning also 
produces carbon emissions. This paper refers to the study of 
He et al. (2018), which considers the carbon emission coef-
ficients of different types of crop straw burning, as shown 
in Table 4. The amount of various crop straw burning is 
represented by its total output.
Carbon emissions from livestock breeding: In the process 
of livestock breeding, the enteric fermentation will produce 
CH4, and the manure emissions will produce CH4 and N2O. 
The greenhouse gas emission coefficients of several cattle 
breeds are provided in Table 5 in this work, based on Min 
et al. (2012) and Xu et al. (2019) research.

 Since the feeding cycles of livestock are different, 
the average annual feeding amount of livestock should be 
adjusted. The slaughter rates of rabbits, pigs, and poultry are 
greater than 1, and their average life cycles are 105 days, 
200 days, and 55 days respectively. Therefore, the average 
feeding amount is adjusted as follows (Equation (1)):
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Ni is the annual average breeding amount for livestock. D_alivei is the average life cycle for 

livestock. Mi is the annual production amount for livestock. 

The slaughter rates of the other livestock are less than 1, so the average feeding amount is adjusted 

as follows (Equation (2)): 
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Ni is the annual average breeding amount for livestock. 
D_alivei is the average life cycle for livestock. Mi is the 
annual production amount for livestock.

The slaughter rates of the other livestock are less than 
1, so the average feeding amount is adjusted as follows 
(Equation (2)):
 Ni = (Ci,t + Ci,t–1)/2 …(2)

Ni is the annual average breeding amount for livestock. 
Ci, t, Ci, t-1 are the stocks of livestock at the end of year t and 
t-1, respectively. 
Estimation of the scale and intensity of agricultural 
carbon emissions: The greenhouse effect produced by 1 
ton of CH4 is equivalent to the greenhouse effect produced 
by approximately 6.82 tons of carbon, and the greenhouse 
effect produced by 1 ton of N2O is approximately equal to the 
greenhouse effect produced by 81.27 tons of carbon (IPCC 
2008). Therefore, when calculating agricultural carbon 
emissions, CH4 and N2O emissions can be converted into 
carbon equivalent.

The calculation method of the agricultural carbon emis-
sion scale is shown in Equation (3):

( ) 2+= 1- /CCN t,it,ii      …(2) 
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Table 5: Greenhouse gas emission coefficients of various species of livestock（kg.(head·a)-1）. 
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CH4 Emission Coefficients N2O Emission Coefficients 

Enteric Fermentation  Manure Emissions Manure Emissions 
Dairy Cow 68 16 1 

Non-dairy Cow 51.4 1.5 1.37 
Mule 10 0.9 1.39 

Camel 46 1.92 1.39 
Donkey 10 0.9 1.39 
Horse 18 1.64 1.39 
Sheep 5 0.16 0.33 
Rabbit 0.254 0.08 0.02 

Live Pig 1 3.5 0.53 
Poultry - 0.02 0.02 
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reduction (Chen et al. 2019). TECH can increase energy utilization and reduce the waste of agricultural 

materials. And it can optimize the allocation of elements and improve production efficiency, thereby 
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burning, and livestock breeding. wl, mr, qp, hb, ls are the 
amounts of carbon sources for agricultural land use, rice 
planting, crop planting, straw burning, and livestock breed-

ing. 
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DEA-Malmquist model (Fare et al. 1994) to measure TECH 
from the perspective of input and output. The input indicators 
are selected from the four aspects of labor, land, capital, and 
mechanization input, which are the number of employees in 
the primary industry, the total sown area of crops, the fixed 
asset investment in the primary industry, and the total power 
of agricultural machinery. The total output value of the pri-
mary industry is selected as the output indicator. 

Urbanization (URBAN): The improvement of URBAN 
will promote ACE (Cui et al. 2018). The increase in UR-
BAN means more farmers will move to cities, and they will 
lease land to farmers who still stay in the countryside, thus 
integrating agricultural land and helping farmers to use land 
more efficiently. Then the income of rural households has 
increased, and farmers can purchase and use more energy 
in agricultural production, thereby increasing ACE (Chen 
et al.2013). This article uses the proportion of the urban 
population in the permanent population at the end of the 
year to measure URBAN.
Rural education (EDU): The improvement of EDU can curb 
ACE. The improvement of EDU helps to strengthen farmers’ 
understanding of low-carbon agriculture and improve their 
ability to use agricultural production technologies, thereby 
improving production efficiency and reducing ACE (Guo et 
al. 2021). This article uses per capita of number of years of 
education in rural areas to measure EDU.
Agricultural industrial structure (STRU): The agricultural 
materials used in the process of planting crops are an important 
source of ACE (Tian et al. 2016). That means the higher the 
proportion of the planting industry is, the more ACE will be. 
This paper uses the ratio of the total output value of the plant-

ing industry to the total output value of agriculture, forestry, 
animal husbandry, and fishery to measure STRU.
Rural economic development(RGDP): The improvement of 
RGDP would curb ACE, because the study area changed the 
way of agricultural development, ensuring the development 
of the agricultural economy while also preventing damage to 
the ecological environment (Cui et al. 2018). This article uses 
the per capita gross production value of agriculture, forestry, 
animal husbandry, and fishery to measure RGDP.

Research Methodology

Huang et al. (2010) proposed the GTWR model, which can 
better analyze the spatiotemporal non-stationary character-
istics of each variable. The model is as follows:
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n

i
TSiiTS ∑ -=

1=

2
-    …(9) 
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1(i, vi, ti), 2(i, vi, ti), 3(i, vi, ti), 4(i, vi, ti), 5(i, vi, ti) are the change rates of the ACEI of 

each province with TECH, URBAN, EDU, STRU, and RGDP, respectively. 

Data Sources 
The above data are from China Statistical Yearbook, China Livestock Industry Yearbook, China Rural 

Statistical Yearbook, China Agricultural Statistics, China Agricultural Machinery Industry Yearbook, 

China Population and Employment Statistics Yearbook, and open data from the National Bureau of 

Statistics. Some missing values are filled by interpolation. All the variables are taken to the logarithm to 

unify the magnitude. The descriptive statistics of variables are shown in Table 6. 
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iŷ-  is the fitted value of yi. The point i does not include in the calibration process. bS and bT are the 

optimal space bandwidth and time bandwidth respectively when CV takes the minimum value. 

 Then, the variables selected above are introduced into Equation (1) to obtain Equation (10): 

     
      iiiiiiiiiiiii

iiiiiiiiiiii

RGDPtSTRUtEDUt
URBANtTECHttACEI







ln,,ln,,ln,,
ln,,ln,,,,ln

543

210  …(10) 

1(i, vi, ti), 2(i, vi, ti), 3(i, vi, ti), 4(i, vi, ti), 5(i, vi, ti) are the change rates of the ACEI of 

each province with TECH, URBAN, EDU, STRU, and RGDP, respectively. 

Data Sources 
The above data are from China Statistical Yearbook, China Livestock Industry Yearbook, China Rural 

Statistical Yearbook, China Agricultural Statistics, China Agricultural Machinery Industry Yearbook, 

China Population and Employment Statistics Yearbook, and open data from the National Bureau of 

Statistics. Some missing values are filled by interpolation. All the variables are taken to the logarithm to 

unify the magnitude. The descriptive statistics of variables are shown in Table 6. 

Table 6: Descriptive statistics of variables. 

Variable Symbol Obs Mean Std. Dev. Min Max 
Agricultural 

Carbon Emission 
Intensity 

lnACEI 126 15.5446 0.5856 14.5707 17.3966 

Agricultural lnTECH 126 0.2646 0.5404 -1.6801 1.0856 

 represent the spatial distance and time distance 
between the data point j and the regression point i  respec-
tively. See Equations (7) and (8) for details:

 

i is the serial number of the point. (i, vi, ti) is the coordinate of the point. yi is the dependent variable. 

xk is the independent variable. i is the error term. k is the function related to the coordinate (i, vi, ti). 

See Equation (5) for details: 

( ) ( )( ) ( )yt,ν,μWXXt,ν,μWXt,ν,μβ̂ iii
T

iii
T

iii
1-=    …(5) 

W is a diagonal matrix. Each element in the matrix represents the weight of the corresponding 

observation point i. The Gaussian spatiotemporal kernel function is used to determine the weight, as 

shown in Equation (6): 

( ) ( )2

2

2

2

-exp×-exp=
T

t

S

st
T,ijs b

d
b
d

W ijij       …(6) 

2
ijsd and 2

ijtd  represent the spatial distance and time distance between the data point j and the 

regression point i respectively. See Equations (7) and (8) for details: 

( ) ( )222 -+-= jijis ννμμd
ij

     …(7) 

( )22 -= jit ttd
ij

        …(8) 

bS and bT represent the spatial bandwidth and the temporal bandwidth respectively. The method of 

selecting the optimal bandwidth is cross-validation (CV). See Equation (9) for details: 

( ) ( )( ) n/b,bŷyb,bCV
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Then, the variables selected above are introduced into 
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1(i, vi, ti), 2(i, vi, ti), 3(i, vi, ti), 4(i, vi, ti), 5(i, vi, ti) are the change rates of the ACEI of 

each province with TECH, URBAN, EDU, STRU, and RGDP, respectively. 
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The above data are from China Statistical Yearbook, China Livestock Industry Yearbook, China Rural 

Statistical Yearbook, China Agricultural Statistics, China Agricultural Machinery Industry Yearbook, 

China Population and Employment Statistics Yearbook, and open data from the National Bureau of 

Statistics. Some missing values are filled by interpolation. All the variables are taken to the logarithm to 

unify the magnitude. The descriptive statistics of variables are shown in Table 6. 

Table 6: Descriptive statistics of variables. 

Variable Symbol Obs Mean Std. Dev. Min Max 
Agricultural 

Carbon Emission 
Intensity 

lnACEI 126 15.5446 0.5856 14.5707 17.3966 

Agricultural lnTECH 126 0.2646 0.5404 -1.6801 1.0856 

 
  …(10)
b1(mi, vi, ti), b2(mi, vi, ti), b3(mi, vi, ti), b4(mi, vi, ti), b5(mi, vi, 
ti) are the change rates of the ACEI of each province with 
TECH, URBAN, EDU, STRU, and RGDP, respectively.

Data Sources

The above data are from China Statistical Yearbook, Chi-
na Livestock Industry Yearbook, China Rural Statistical 
Yearbook, China Agricultural Statistics, China Agricultural 
Machinery Industry Yearbook, China Population and Em-
ployment Statistics Yearbook, and open data from the Na-
tional Bureau of Statistics. Some missing values are filled by 
interpolation. All the variables are taken to the logarithm to 
unify the magnitude. The descriptive statistics of variables 
are shown in Table 6.

RESULTS AND DISCUSSION

Empirical Results of GTWR

This paper uses the GTWR model to analyze the spatiotemporal 

characteristics of the influencing factors. Firstly, SPSS was 
used to analyze the variance inflation factor (VIF) showing 
that there was no obvious multicollinearity. Then, use OLS, 
TWR, GWR, GTWR models in ArcGIS. The evaluation 
indicators are shown in Table 7. The R2 of the GTWR model 
is the largest. The AIC of the GTWR model is the smallest. 
Therefore, the GTWR model is a better choice. Finally, the 
GTWR model is used to obtain the estimated results of the 
coefficients of variables. The descriptive statistics of the 
coefficients are shown in Table 8.

Spatiotemporal Evolution of Influencing Factors

(1) The coefficients of lnTECH in most provinces are nega-
tive, indicating that TECH has an inhibitory effect on ACEI 
(Table 9). In 2005 and 2009, TECH in all provinces inhibited 
ACEI. In 2005, for every 1% increase in lnTECH, ACEI fell 
by 0.16%-1.65%. In 2009, for every 1% increase in lnTECH, 
ACEI fell by 0.17%-0.77%. In 2013, only five provinces’ 
TECH had an inhibitory effect on ACEI, while the TECH 
in Shanxi, Inner Mongolia, Shandong, and Qinghai became 
the promotion of ACEI. In 2018, TECH in 6 provinces has 
a depressing effect on ACEI, while TECH in Shanxi, Shan-
dong, and Henan has a promoting effect on ACEI. On the 
whole, the inhibitory effect of TECH on ACEI is weakening, 
or even turning into a promotion effect, which shows that 

Table 6: Descriptive statistics of variables.

Variable
Symbol

Obs Mean Std. Dev. Min Max

Agricultural Carbon Emission Intensity lnACEI 126 15.5446 0.5856 14.5707 17.3966

Agricultural Technological Progress lnTECH 126 0.2646 0.5404 -1.6801 1.0856

Urbanization lnURBAN 126 -0.7633 0.1724 -1.2033 -0.4667

Rural Education lnEDU 126 1.9816 0.1032 1.6387 2.1671

Agricultural Industrial Structure lnSTRU 126 -0.5993 0.1523 -0.9576 -0.2420

Rural Economic Development lnRGDP 126 15.1942 1.3355 12.7714 18.7010

Table 8: The descriptive statistics of the regression coefficients of the GTWR model.

Symbol Obs Mean Std. Dev. Min Max

lnTECH 126 -0.2424       0.4803 -1.6497 1.1801

lnURBAN 126 -0.2326         0.9201 -2.0003 1.8497

lneEDU 126 -0.5974         1.4059 -3.1683 3.2775

lnSTRU 126 -0.2169       0.7319 -2.2913 1.0592

lnRGDP 126 -0.3141       0.1528 -0.7426 -0.0088

Table 7: The comparison of evaluation indicators of OLS, TWR, GWR, GTWR.

OLS TWR GWR GTWR

R2 0.8907 0.9487 0.9846 0.9944

AIC -37.0986 -78.3997 -184.9170 -203.6920
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TECH in nine provinces is more inclined to the expansion 
of agricultural production while ignoring the development 
of low-carbon technology.

(2) The coefficients of lnURBAN in most provinces are 
negative, which indicates that URBAN has an inhibitory ef-
fect on ACEI (Table 10). In 2005, the coefficients of Sichuan 
and Qinghai were positive. For every 1% increase in lnUR-
BAN of the remaining provinces, ACEI fell by 0.36%-1.65%. 
In 2009, the coefficients of Sichuan, Gansu, and Qinghai 
were positive. For every 1% increase in lnURBAN of the 
remaining provinces, ACEI fell by 0.43%-1.46%. In 2013, 
the coefficients of Sichuan, Gansu, and Qinghai were pos-
itive. For every 1% increase in lnURBAN of the remaining 
provinces, ACEI fell by 0.21%-1.16%. The province with the 
most restraining effect was Henan. In 2018, the coefficients of 
Inner Mongolia, Gansu, and Qinghai were positive. For every 
1% increase in lnURBAN of the remaining provinces, ACEI 
fell by 0.30%-2.00%. The province with the most restraining 
effect was still Henan. The coefficients of Sichuan, Gansu, 

and Qinghai have been positive for a long time. This may 
be because the URBAN in these provinces is in an extensive 
model. The lifestyles of rural households have changed, 
resulting in higher income and higher energy consumption, 
which has led to an increase in ACEI.

(3) In 2005, only Shandong, Sichuan, Gansu, and Qinghai 
had negative coefficients (Table 11). For every 1% increase 
in lnEDU, ACEI fell by 0.84%-2.68%. And the coefficients 
for the remaining five provinces were positive. In 2009, only 
Shaanxi had a positive coefficient. For every 1% increase 
in lnEDU in the remaining provinces, ACEI fell by 0.31%-
2.60%. The province with the most restraining effect was 
Shandong. In 2013, only Henan had a positive coefficient. 
For every 1% increase in lnEDU in the remaining provinces, 
ACEI fell by 0.68%-1.98%. In 2018, the coefficients of Inner 
Mongolia, Henan, and Shaanxi were positive. For every 1% 
increase in lnEDU in the remaining provinces, ACEI fell by 
0.85%-1.65%. The province with the most restraining effect 
is still Shandong. The coefficients of Inner Mongolia, Henan, 

Table 9: The comparison of coefficients of lnTECH.

Year Coefficient Province Year Coefficient Province

2005 -1.649679 Shaanxi 2009 -0.773829 Inner Mongolia

-1.649678~-1.314597 Shanxi -0.773828~-0.495197 Shanxi, Sichuan, Ningxia

-1.314596~-0.738838 Inner Mongolia, Shandong, Ningxia -0.495196~-0.287975 Shandong

-0.738837~-0.422202 Henan, Sichuan -0.287974~-0.179086 Henan, Shaanxi, Gansu

-0.422201~-0.161031 Gansu, Qinghai -0.179085~-0.142997 Qinghai

2013 -0.225517 Henan 2018 -0.382916~-0.367305 Sichuan, Shaanxi

-0.225516~-0.124885 Sichuan, Ningxia -0.367304~-0.224435 Inner Mongolia, Gansu

-0.124884~ 0.006878 Shaanxi, Gansu, Qinghai -0.224434~-0.076516 Qinghai, Ningxia

0.006879~ 0.173274 Inner Mongolia, Shandong -0.076515~ 0.464161 Shandong, Henan

0.173275~ 0.422710 Shanxi 0.464162~ 1.180101 Shanxi

Table 10: The comparison of coefficients of lnURBAN.

Year Coefficient Province Year Coefficient Province

2005 -1.647911 Inner Mongolia 2009 -1.461374 Shaanxi

-1.647910~-1.153687 Shaanxi, Ningxia -1.461373~-0.854348 Shanxi, Shandong, Henan,  
Ningxia

-1.153686~-0.580577 Shandong -0.854347~-0.436276 Inner Mongolia

-0.580576~-0.362097 Shanxi, Henan, Gansu -0.436275~ 0.490700 Gansu

-0.362096~ 0.920961 Sichuan, Qinghai 0.490701~ 0.935310 Sichuan, Qinghai

2013 -1.155129 Henan 2018 -2.000269 Henan

-1.155128~-0.528612 Shanxi, Inner Mongolia, Shaanxi -2.000268~-1.085537 Shanxi, Shaanxi

-0.528611~-0.213141 Shandong, Ningxia -1.085536~-0.299831 Shandong, Sichuan, Ningxia

-0.213140~ 0.686070 Sichuan, Gansu -0.299830~ 0.412768 Gansu

0.686071~ 1.195260 Qinghai 0.412769~ 1.751666 Inner Mongolia, Qinghai
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and Shaanxi have changed from positive to negative, and 
then to positive again, indicating that their EDU is not stable 
enough. Shandong’s coefficient has always been negative, 
and its inhibitory effect ranked first in 2018. This is because 
Shandong has good educational resources. On the whole, the 
effect of EDU in each province on ACEI is changing from a 
promoting effect to a restraining effect, but the EDU of some 
provinces still needs to be improved.

(4) In 2005, only Inner Mongolia, Shandong, and Henan 
had positive coefficients (Table 12). For every 1% increase 
in lnSTRU in the remaining provinces, ACEI fell by 0.12%-
0.76%. In 2009, the coefficients of Shanxi, Inner Mongolia, 
Shandong, Henan, and Sichuan were positive. For every 1% 
increase in lnSTRU in the remaining provinces, ACEI fell 
by 0.32%-0.64%. In 2013, only Inner Mongolia, Shandong, 
and Henan had positive coefficients. For every 1% increase 
in lnSTRU in the remaining provinces, ACEI fell by 0.29%-
2.05%, and the province with the most restraining effect 
was Shaanxi. In 2018, the coefficients of Inner Mongolia, 

Shandong, Sichuan, and Gansu were positive. For every 1% 
increase in lnSTRU in the remaining provinces, ACEI fell 
by 0.26%-2.28%, and the province with the most restraining 
effect was still Shaanxi. The coefficients of Inner Mongolia 
and Shandong have always been positive, indicating that their 
planting industry contributes a lot to ACEI. The coefficients 
of Shaanxi, Qinghai, and Ningxia have always been nega-
tive, indicating that their planting industries don’t contribute 
much to ACEI. The signs and sizes of the coefficients in 
different provinces are different, indicating that for different 
provinces, the contribution of planting to ACEI is different.

(5) The coefficients of all provinces from 2005 to 2018 
are negative (Table 13). In 2005, for every 1% increase in 
lnRGDP of each province, ACEI fell by 0.27%-0.50%. In 
2009, for every 1% increase in lnRGDP of each province, 
ACEI fell by 0.25%-0.57%. The province with the most re-
straining effect was Qinghai. In 2013, for every 1% increase 
in lnRGDP of each province, ACEI fell by 0.02%-0.70%. 
The province with the most restraining effect was Qinghai. 

Table 11: The comparison of coefficients of lnEDU.

Year Coefficient Province Year Coefficient Province

2005 -2.678585~-2.405002 Gansu, Qinghai 2009 -2.599254 Shandong

-2.405001~-1.757907 Sichuan -2.599253~-2.027379 Henan, Gansu

-1.757906~-0.838910 Shandong -2.027378~-1.784293 Sichuan, Qinghai

-0.838909~ 0.778079 Inner Mongolia, Henan, Ningxia -1.784292~-0.312775 Shanxi, Inner Mongolia, Ningxia

0.778080~ 2.618964 Shanxi, Shaanxi -0.312774~ 1.355597 Shaanxi

2013 -1.982982~-1.705128 Inner Mongolia, Gansu 2018 -1.645274 Shandong

-1.705127~-1.081102 Shandong -1.645273~-0.852317 Shanxi, Gansu, Qinghai, Ningxia

-1.081101~-0.847841 Shaanxi, Qinghai -0.852316~ 0.260609 Inner Mongolia, Sichuan

-0.847840~-0.676302 Shanxi, Sichuan, Ningxia 0.260610~ 1.426912 Shaanxi

-0.676301~ 1.923003 Henan 1.426913~ 3.219786 Henan

Table 12: The comparison of coefficients of lnSTRU.

Year Coefficient Province Year Coefficient Province

2005 -0.761454~-0.702788 Shaanxi, Gansu 2009 -0.646380 Gansu

-0.702787~-0.554412 Ningxia -0.646379~-0.322537 Shaanxi, Qinghai, Ningxia

-0.554411~-0.123488 Shanxi, Sichuan, Qinghai -0.322536~ 0.351141 Shanxi, Sichuan

-0.123487~ 0.031850 Inner Mongolia, Henan 0.351142~ 0.487373 Inner Mongolia, Henan

0.031851~ 0.951604 Shandong 0.487374~ 0.882900 Shandong

2013 -2.046561 Shaanxi 2018 -2.279289 Shaanxi

-2.046560~-0.790560 Qinghai, Ningxia -2.279288~-0.745337 Shanxi, Henan, Ningxia

-0.790559~-0.291478 Shanxi, Sichuan, Gansu -0.745336~-0.264268 Qinghai

-0.291477~ 0.033379 Inner Mongolia -0.264267~ 0.132499 Sichuan, Gansu

0.033380~ 0.965521 Shandong, Henan 0.132500~ 0.698138 Inner Mongolia, Shandong
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In 2018, for every 1% increase in lnRGDP of each province, 
ACEI fell by 0.01%-0.42%, and the province with the most 
restraining effect was still Qinghai. Although the coefficients 
of all provinces are negative, as time goes by, the gap in 
absolute values has increased. This demonstrates that each 
province’s rural economy has been turned into a low-carbon 
economy, although the degree of the transformation varies 
by province, and some provinces may have experienced a 
transformation bottleneck.

CONCLUSION

This paper estimates the agricultural carbon emissions of 
nine provinces in the Yellow River Basin from 2005 to 2018 
and uses the GTWR model to analyze the spatiotemporal 
characteristics of influencing factors of agricultural carbon 
emissions. The main conclusions are as follows:

Agricultural carbon emissions in the nine provinces 
of the Yellow River Basin increased slowly from 2005 to 
2018. Agricultural carbon emissions continued to decrease 
in intensity. \

The share of agricultural carbon emissions from diverse 
carbon sources has changed from 2005 to 2018.

3. The five parameters have distinct directions and magni-
tudes of impact on agricultural carbon emissions throughout 
the nine provinces of the Yellow River Basin, according to the 
GTWR model’s regression results. As a result, each province 
should take specific steps to minimize carbon emissions 
depending on the local conditions. 
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