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       ABSTRACT
Smart grids are modernized, intelligent electricity distribution systems that integrate information 
and communication technologies to improve the efficiency, reliability, and sustainability of the 
electricity network. However, existing smart grids only integrate renewable energies when 
it comes to active demand management without taking into consideration the reduction of 
greenhouse gas emissions. This paper addresses this problem by forecasting CO2 emissions 
based on electricity consumption, making it possible to transition to renewable energies and 
thereby reduce CO2 emissions generated by fossil fuels. This approach contributes to the 
mitigation of climate change and the preservation of air quality, both of which are essential 
for a healthy and sustainable environment. To achieve this goal, we propose a transformer-
based encoder architecture for load forecasting by modifying the transformer workflow and 
designing a novel technique for handling contextual features. The proposed solution is tested 
on real electricity consumption data over a long period. Results show that the proposed 
approach successfully handles time series data to detect future CO2 emissions excess and 
outperforms state-of-the-art techniques.

INTRODUCTION

The load demand for electrical energy is gradually increasing 
as the number of Electrical appliances in different fields such 
as Heating, lighting, washing, and many more vital daily 
life activities is rising (Hernandez et al. 2014). However, 
the misuse of this energy resource makes it a double-edged 
sword. How people generate electricity is a crucial issue at 
a time when environmental issues and the struggle against 
climate change are taking on more and more importance in 
our daily lives (Harper & Snowden 2017). Many countries, 
such as the United States, China, and Russia, rely heavily 
on fossil fuels for electricity generation, mainly due to the 
availability of fossil resources on their territory and the 
existing capacity of their power stations (Schulz & AQAL 
Group 2019). Power generation from fossil fuels such 
as natural gas or coal has long been an important source 
of energy but is now coming under scrutiny due to its 
environmental implications (Zou et al. 2016). It is essential 
to keep in mind that although this method of generating 
electricity from natural gas is efficient in terms of energy 
output, it still has a major negative impact on the environment 
and significantly increases carbon dioxide (CO2) emissions, 
which are one of the main causes of global environmental 
problems. Rising sea levels, more extreme weather 

conditions, and the devastation of ecosystems are just some 
of the effects of climate change caused by CO2 emissions 
related to electricity generation (Slingo & Slingo 2024). 
In addition to CO2, the combustion of fossil fuels releases 
other atmospheric pollutants such as nitrogen oxides (NOx), 
sulfur dioxide (SO2), and fine particles. These pollutants have 
adverse effects on air quality and can cause serious health 
problems for local populations. The use of fossil fuels also 
leads to the destruction of ecosystems, deforestation, water 
pollution, and the disruption of biodiversity. Cooling fossil 
fuel power plants requires large quantities of water, which 
can lead to conflicts over water use and the disruption of 
aquatic ecosystems (Wu et al. 2023). Furthermore, in 2022, 
global CO2 emissions from energy combustion and industrial 
processes reached a new historical record of 36.8 billion 
metric tons (Gt) (Wang & He 2023). This represents an 
increase of 0.9%, equivalent to 321 million metric tons (Mt) 
in the previous year (Scott et al. 2000).

Smart grids are an emerging technology aiming to 
optimize energy usage by enabling precise management of 
electricity production, distribution, and consumption. This 
can reduce energy losses and maximize system efficiency 
(Mishra & Singh 2023). Additionally, smart grids facilitate 
the efficient integration of renewable energy sources, such as 
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solar and wind, into the electricity grid (Kataray et al. 2023). 
However, existing smart grids transition to renewable energy 
to address fluctuations in demand, environmental constraints, 
and seasonal variations without adequately considering air 
pollution. Consequently, it has become essential to develop 
accurate forecasting systems to anticipate future demand 
and effectively manage these energies, ultimately leading 
to a reduction in CO2 emissions.

This study presents a novel adaptation of the transformer 
architecture specifically tailored for load forecasting. The 
focus of this research is on improving forecast accuracy for 
real-time data streams by incorporating modifications to the 
encoder component. In contrast to many charge forecasting 
studies that assess proposed solutions based on short-term 
data, our investigation delves into the adaptability and 
performance of our solution across extended periods of 
data flow.

Introducing a 4-space transformation module with a 
revamped workflow, this approach aims to bolster the 
efficiency of load forecasting tasks. The evaluation of the 
proposed method utilizes real data streams, demonstrating 
that the adapted transformer consistently outperforms 
existing state-of-the-art methods.

RELATED WORKS

Forecasting is a very important challenge for electricity 
providers and has received considerable attention in 
the existing literature. The ability to accurately forecast 
electricity demand is crucial for efficient resource planning, 
grid management, and ensuring a reliable and sustainable 
electricity supply, which automatically implies a reduction 
in CO2 emissions in order to preserve society’s health and 
its environment. By managing electricity demand more 
effectively, it is possible to reduce the use of fossil fuel 
power stations. This translates into lower CO2 emissions, 
helping to fight climate change and its harmful effects. 
Many studies have focused on developing forecasting 
models and techniques specifically tailored to the unique 
characteristics of electricity consumption. These models 
have been developed to capture the complex and dynamic 
nature of electricity demand, taking into account factors 
such as temporal patterns, seasonality, weather conditions, 
economic indicators, and consumer behavior. 

Researchers have used a wide range of approaches to 
forecast electricity demand, including statistical methods, 
machine learning algorithms, time series analysis, artificial 
neural networks, and hybrid models. These techniques 
continue to evolve and improve with advances in data 
availability, computing power, and predictive analysis. The 
studies on electricity demand forecasting offer valuable 

perspectives, methodologies, and empirical results that 
help to understand the complexities of the problem. This 
knowledge forms the basis for the development of accurate 
and robust forecasting models, which support decision-
making processes within the electricity industry. 

Recent studies in electrical process management include 
several techniques in an attempt to analyze, understand, and 
predict electrical consumption, ranging from conventional 
ones such as CNN (Kim & Cho 2019), to statistical 
approaches to modern machine learning (Solyali 2020, 
Ahmad & Chen 2018) and deep learning methods [Bedi & 
Toshniwal 2019, Rahman et al. 2018] such as Long Short 
Term Memory (LSTM) based deep framework and deep 
Recurrent Neural Network (RNN). Process analysis, which 
is an evaluation of time series (Singh & Yassine 2018) 
by taking into account historical relationships between 
occurrences of electrical data, is used in a substantial part 
of the aforementioned methodologies. 

The most traditional electrical consumption predictions 
are Artificial neural networks (ANN) (Deo & Şahin 2017, 
Jetcheva et al. 2014), which have determined that ANN is a 
high-performance model that generates good results in the 
case of energy prediction, whether for an entire region or a 
single building., Support vector machine (SVM) (Guo et al. 
2006, Daut et al. 2017), which has proven its effectiveness 
in various fields, regression that offers a modeling of the 
relationships between the independent variables and the 
dependent variable (Yildiz et al. 2017, Kavousi-Fard et 
al. 2014), random forest (RF) known to reduce overfitting 
(Dudek 2015) that uses the seasonal cycles of time series to 
simplify the forecasting problem. The use of Convolution 
neural networks (CNN) architecture for their performance 
of feature extraction (Levi & Hassner 2015, He 2017) 
by using more than one feature to estimate electrical 
demand, including temperature (Deo & Şahin 2017), 
weather (Chow & Leung 1996), and many other exogenous 
variables (Jetcheva et al.2014, Roldán-Blay et al. 2013). 
In the aforementioned related works, as well as the recent 
advancement architectures: Support vector regression with 
modified firefly algorithm (SVR-MFA) (Kavousi-Fard 
& Marzbani 2014) and Support vector regression (SVR) 
combined with swarm optimization algorithms (SVR-
PSO) (Jiang et al. 2016). In various traditional modeling 
approaches, the processing analysis of input data is handled 
independently, without taking into account the temporal 
nature of the data. This implies that each data point is used 
as separate information, regardless of its relationship to all 
the other occurrences of the data. However, considering time-
series data, as in this paper, energy consumption, the temporal 
aspect plays a crucial role. Values are interdependent, 
interconnected, and influenced by previous or subsequent 
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ones. The most important information to use are patterns, 
trends, and dependencies, which are essential for an accurate 
analysis and prediction.

To address this issue, (RNN) (Huang et al. 2021, Elsaraiti 
& Merabet 2021) and (LSTM) architecture can catch temporal 
dependencies in energy consumption data (Memarzadeh & 
Keynia 2021, Le et al. 2019) are frequently employed in the 
prediction of nonlinear time series as a neural network that 
integrates time dependency, and their usefulness has been 
demonstrated in the field of building energy consumption. 
The use of RNN in the field of building energy consumption 
prediction has been expanded to more complex LSTM (Chen 
et al. 2018) and generative adversarial networks (GAN) 
which are an advanced deep learning method (Zhang & 
Guo 2020). Baasch et al. (2021) and Bendaoud et al. (2021) 
demonstrated that GAN offers an innovative approach to 
electric charge prediction by generating new realistic electric 
charge time series and improving prediction despite their 
complexity. One way to explore the Attention Mechanism 
and Transformer Model power in comparison to the classic 
machine-learning (ML) approach is to identify the processing 
mode for previously known information and forecast future 
known or unknown information. Encoders and decoders are 
extensively employed in natural language processing and 
were originally utilized for sequence-to-sequence encoding 
and processing (Wu et al. 2021, Giuliari et al. 2021), with 
the use of historical data.

Traditionally, machine learning algorithms are the root 
of artificial intelligence techniques that have been used in 
electrical forecasting for decades, exploiting their capacity 
to capture complicated non-linear data correlations. The 
advancement of deep learning techniques is used to address a 
wide range of more complex applications, especially applied 
to electricity usage.

From these models, Recurrent neural networks 
(RNN), Long Short-Term Memory (LSTM), and 
Convolutional Neural Networks (CNN), in particular, have 
demonstrated their usefulness in dealing with time series  
(Fu et al. 2022).

Due to the irregular nature of the market, forecasting 
electricity consumption has shown to be a tricky task; it may 
be classified as a non-linear time series problem (Clements et 
al. 2004) since future values cannot be represented as linear 
combinations of previous ones. Several researchers employed 
statistical or machine learning-based time series forecasting 
models to anticipate the near future electrical load to solve 
this issue. However, extracting important features from the 
large quantities of data collected from different sources is 
a difficult task that remains largely unsolved. To this end, 
processing and analyzing these data represents a major 

challenge that still requires significant advances to achieve 
complete resolution (Bello-Orgaz et al. 2016).

The most recent studies underline the need to accurately 
forecast energy demand, a key element in optimizing 
power grid management and reducing CO2 emissions. This 
research takes place in a global context where the transition 
to renewable energies is becoming an imperative in the fight 
for a healthier environment.

ve in the fight for a healthier environment. Focusing on 
consumption forecasting, the researchers aim to facilitate the 
efficient integration of renewable energies, such as solar and 
wind power (Kamani & Ardehali 2023), into the power grid. 
To achieve their goals, various research projects have focused 
on the Internet of Things (IoT), and a number of studies have 
focused on connected sensors to observe load, temperature, 
humidity, or energy consumption in real-time. To observe 
changes and decide whether they should be shifted towards 
renewable energies (Raju & Laxmi 2020). Venkatesan 
et al. (2022) provided an effective solution for managing 
agricultural energy. The smart farm system described in 
this study is based on the ability to regulate the growing 
environment with sensors, which are designed to regulate 
their internal power levels according to the temperatures they 
observe. A prediction model based on the Internet of Things 
(IoT) and artificial intelligence (AI) to monitor IAQ in real 
time using CO2 measurement data has been modeled (Zhu et 
al. 2022). It highlights the importance of monitoring indoor 
air quality (IAQ), particularly in response to the COVID-19 
pandemic, as poor IAQ can have an impact on health.

This research will not only optimize the use of clean 
energy but also reduce CO2 emissions into the air by 
comparing several ML approaches such as Transformer, 
CNN, LSTM, and RNN. A more precise and accurate 
prediction of electricity consumption will lead to a significant 
reduction in power losses, particularly by limiting the 
overproduction of electricity, which is the source of pollution 
due to CO2 emissions. In addition, this prediction will alert 
us to consumption peaks before they occur, enabling us to 
switch quickly to renewable energies.

PROPOSED APPROACH

This section is divided into two parts. First, the theoretical 
background was introduced, including numerous essential 
time-series concepts and the deep learning models used in 
this work. The proposed approach is then presented following 
the suggested transformer model validation technique.

Theoretical Background

This section highlights the importance of deep learning in 
predicting power generation to reduce CO2 emissions. Deep 
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learning neural networks, in particular the transformer, are 
proving effective in processing indexed temporal data. These 
networks are capable of learning complex correspondences 
between inputs and outputs and excel in the automatic 
processing of a wide range of temporal data. In the context 
of this study, the processor is considered a forecaster. Unlike 
traditional approaches such as CNN, RNN, and LSTM, 
which encounter difficulties in modeling complex long-
term relationships in data sequences due to problems such 
as “gradient disappearance and explosion” in RNNs and the 
limitations of convolutional filters, the transformer offers a 
novel solution. It introduces a revolutionary model of long-
term memory, as described in the article Attention Is All 
You Need (Vaswani et al. 2017). The practical application 
of this technology lies in the accurate prediction of electricity 
demand. Once the prediction reaches a certain threshold, the 
system automatically switches to using renewable energies 
rather than more polluting sources such as gas for power 
generation. This proactive strategy optimizes the use of 
renewable energies and significantly reduces CO2 emissions, 
thus contributing to a more sustainable and environmentally 
friendly transition in the power generation sector. In a 
nutshell, transformers represent a cutting-edge approach 
to Natural Language Processing (NLP). They leverage the 
Multi-head Self-Attention (MSA) mechanism to gather 
information and build dynamic contextual understanding by 
comparing each token in an input sequence to every other 
token. The Transformer model establishes an information-
passing graph among its inputs. Unlike sequential processing, 
transformers circumvent the issue of vanishing gradients 
commonly encountered by RNNs during long-term 
predictions. As a result, transformers have been successfully 
employed in datasets containing extensive historical data to 
derive optimal models for time-series forecasting (Zeng et 
al. 2023).

Encoder-Decoder Transformer-Based Prediction 
Model 

The Transformer-based forecasting model (Vaswani et al. 
2017) is based on the original Transformer architecture, 
which consists of encoder and decoder layers. The 
architecture of an encoder-decoder transformer is made up 
of many significant components and steps.

The principal element of the model is the encoder, which 
is in charge of processing inputs and transforming them into 
representations helpful for prediction. A number of encoder 
layers are stacked on top of one another. The two primary 
sub-modules that compose up each encoder layer are the 
forward propagation neural network and the multi-headed 
attention. The input layer transforms the time series data into 
a vector of dimension d using a fully connected network, as 
shown in Fig. 1.

Transforms the time series data into a vector of dimension 
using a fully connected network, as shown in Fig. 1. The 
usage of a multi-head attention mechanism requires this 
transition. The multi-head attention assists the model in 
identifying the relations between various elements of the 
input sequence. The positional encoding helps the model to 
identify temporal dependencies and the relationship between 
the various values across time. The position vectors can be 
added to electrical charge value embedding using position 
encoding using sine and cosine functions. Then, the four 
encoder layers receive the generated vector. A d-dimensional 
model vector created by the encoder is then supplied to the 
decoder.

The decoder inputs are created using the last data point 
of the encoder outputs. A decoder input layer is employed to 
process these inputs, converting them into a d-dimensional 
vector representation suitable for further processing. Multi-
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The decoder inputs are created using the last data point of the encoder outputs. A decoder input layer is employed 
to process these inputs, converting them into a d-dimensional vector representation suitable for further processing. 
Multi-head attention is also employed in the decoder; however, it differs slightly from the attention used in the encoder. 
Multi-head attention considers both the outputs from the encoder and the outputs from the previous decoders for 
each place in the decoder. This enables the decoder to focus on both the information coming from the encoder that 
is pertinent and the data that the decoder has already produced. The output layer is responsible for generating the 
target time sequence based on the results of the preceding decoding layers. It combines the data from earlier layers 
to create the desired output. A method known as look-ahead masking is used to ensure that decoder predictions only 
depend on previous positions. This masking forces the decoder to rely solely on historical data by preventing access 
to future data throughout the prediction process. Additionally, the decoding module introduces a one-position offset 
between the decoder input and the target output. 

Encoder Transformer-Based Prediction Model 

Transformers have often been developed as encoder-decoder neural networks. The encoder-decoder configuration 
is frequently used in a variety of unsupervised tasks, including anomaly detection (Huang et al. 2020), translation 
(Vaswani et al. 2017), language and vision (Zhu et al. 2021), and more, which is necessary for this specific usage of 
transformer topology. The basic structure has been modified in the suggested modeling approach to use only the 

Fig. 1: Encoder-decoder transformer-based prediction model (Vaswani et al. 2017).
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and weather conditions) and outputs (future consumption) is 
challenging. Transformers have proved effective in detecting 
these relationships in a variety of tasks, but their direct use 
for supervised prediction problems can be challenging. The 
considered approach focuses on obtaining the most pertinent 
information from the input data using only the encoder part 
of the transformer.

SYSTEM ARCHITECTURE

The study used a dataset of 4,380 days of quarter-hourly 
electricity consumption from Algerian electricity supplier 
“Sonalgaz,” covering the years 2008 to 2020. (Bendaoud et 
al. 2021) The survey showed that a number of variables, such 
as climate and seasonal fluctuations, have a significant impact 
on electricity consumption. The Min-Max normalization 
procedure was used to ensure data stability for the analysis of 
daily consumption. This normalization method improves data 
stability, which facilitates model learning and convergence. 
The model aimed to meet the challenge of forecasting 
daily electrical energy consumption using multivariate 
data collected at 24-hour intervals in order to switch to 
renewable energies during periods of high consumption 
and reduce CO2 emissions, as shown in Fig. 2. The figure 
describes the impact of electricity consumption prediction 
on CO2 emissions, renewable energy use, and intelligent grid 
management, which relies on a complex symbiosis between 
different players in the energy system. Initially, the gas-
fired power plant generates electricity while emitting CO2, 
revealing the environmental implications associated with 
this traditional production method. Electricity consumption 
prediction is emerging as a key enabler of this process. It 
draws on historical data and sophisticated predictive models 
to anticipate future electricity demand. This forecast guides 
Prediction Response, triggering adjustments in generation 
and prompting a transition to renewable energy sources. 
This last aspect is essential, as it marks a turning point 
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inputs (such as historical consumption habits, time of day, 
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towards cleaner production and a consequent reduction in 
CO2 emissions.

System Planning Proposed

The process of converting gas into electricity in a power 
plant is usually handled by a gas-fired power station. In a 
gas-fired power plant, gas (often natural gas) is burned in a 
combustion chamber to produce heat. This heat is used to 
vaporize a heat-transfer fluid, usually water, creating high-
pressure steam that is directed toward a turbine, causing it 
to rotate. The rotation of the turbine drives a generator that 
converts mechanical energy into electricity. The electricity 
generated is then distributed via the power grid to homes 
or housing estates, which are equipped with electrical 
sensors that measure electricity consumption in real-time, 
recording consumption data and creating a dynamic database 
containing information on consumption patterns as shown 
in Fig. 3. From these data, different prediction models are 
tested and compared in order to choose the best possible 
predictor. First of all, the results of these predictions are of 
crucial importance, as they offer valuable insights to guide 
electricity suppliers in their strategic decisions. In particular, 
if the forecasts indicate an excessively high CO2 emission 
rate, this can guide the supplier towards greater integration of 
renewable energies. These results can be used as a compass 

to take proactive measures to reduce the carbon footprint, 
adjusting power generation for more sustainable sources where 
necessary. Using this data, several prediction models are 
rigorously tested and compared to select the best-performing 
predictor. The results of these predictions are of crucial 
importance, as they offer valuable insights to guide electricity 
suppliers in their strategic decisions. In particular, if the 
forecasts indicate an excessively high CO2 emission rate, this 
can guide the supplier towards greater integration of renewable 
energies. These results can be used as a compass to take 
proactive measures to reduce the carbon footprint, adjusting 
power generation in favor of more sustainable sources where 
necessary. In addition, prediction results provide crucial 
indications for optimal power generation planning. With an 
understanding of expected demand trends, the supplier can 
adjust production accordingly, optimizing available resources 
and improving operational efficiency. This iterative process of 
prediction, model evaluation and strategic adjustment helps to 
establish proactive management of power generation, aligned 
with environmental sustainability objectives, while ensuring 
efficient planning and agile response to changing energy needs.

Transformer-Based Encoder

The basic Transformer encoder architecture and a number 
of additional models were trained and compared to predict 
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dynamic database containing information on consumption patterns as shown in Fig. 3. From these data, different 
prediction models are tested and compared 

 

Fig. 3: Conceptual chart of the proposed system. 

in order to choose the best possible predictor. First of all, the results of these predictions are of crucial importance, 
as they offer valuable insights to guide electricity suppliers in their strategic decisions. In particular, if the forecasts 
indicate an excessively high CO2 emission rate, this can guide the supplier towards greater integration of renewable 
energies. These results can be used as a compass to take proactive measures to reduce the carbon footprint, 
adjusting power generation for more sustainable sources where necessary. Using this data, several prediction models 
are rigorously tested and compared to select the best-performing predictor. The results of these predictions are of 
crucial importance, as they offer valuable insights to guide electricity suppliers in their strategic decisions. In 
particular, if the forecasts indicate an excessively high CO2 emission rate, this can guide the supplier towards greater 
integration of renewable energies. These results can be used as a compass to take proactive measures to reduce 
the carbon footprint, adjusting power generation in favor of more sustainable sources where necessary. In addition, 
prediction results provide crucial indications for optimal power generation planning. With an understanding of 
expected demand trends, the supplier can adjust production accordingly, optimizing available resources and 
improving operational efficiency. This iterative process of prediction, model evaluation and strategic adjustment helps 
to establish proactive management of power generation, aligned with environmental sustainability objectives, while 
ensuring efficient planning and agile response to changing energy needs. 

Transformer-Based Encoder 

The basic Transformer encoder architecture and a number of additional models were trained and compared to predict 
load data for the next day using data divided into 24-hour intervals. The encoder presented in this research paper is 
based on the Transformer architecture and will be compared with other models in the following section, as shown in 
Fig. 4. 

Fig. 3: Conceptual chart of the proposed system.

 

 

Fig. 4: The Transformer-Encoder framework. 

 

The Transformer model is a neural network design that is frequently employed in Natural language processing. 
Nevertheless, its applications are not limited to language-related tasks. One such application is electrical load 
prediction, where the Transformer model can be effectively utilized. The Transformer Encoder design is a stack of 
residual encoder blocks in a more formal sense. During training, the transformer-based encoder maps the input 
sequence to a contextualized encoding sequence. 

The encoder block begins with a bidirectional self-attention layer, followed by two feedback layers. Various 
implementations have been explored to optimize performance on time-series data, each customizing its methods to 
meet specific needs. A crucial adaptation has been introduced to the attention map to effectively capture short-term 
patterns. This adjustment involves incorporating a window that confines backward attention, allowing focused 
analysis on nearby time sequences. Following a normalization step, the input sequence is transformed into a fixed-
dimension vector for each element, ensuring uniform data preparation for consistent analysis. In the instance of 
electric charge prediction, each element represents a specific temporal value of electric charge, contributing to a 
meaningful representation for a more nuanced understanding of temporal patterns. Maintaining the chronological 
order of power consumption times is facilitated by positional encoding. Assigning a specific value to each element in 
the time sequence based on its relative position is essential for the model to capture temporal dynamics and 
accurately interpret variations in power consumption over time. Position-dependent cyclic patterns are made using 
the sin in eq. 1 and cos functions eq. 2. The embedding of the sequence elements is then enhanced using these 
cyclic patterns. In doing so, it is possible for each element to have a distinct vector representation that includes both 
information and position. 

PE(pos2I)= sin(pos/2i/(10000dmodel))             …(1)  

PE(pos2i + 1)= cos(pos/2I/(10000dmodel)) …(2)  

with PE: the calculated positional encoding. 

Once the position vectors have been generated, they are combined with their respective elements in the 
sequence. This step involves summing the position vectors with the existing embedding. This allows position 
information to be combined with the characteristics of each element with the eq. 3. The addition of position vectors 
enables the model to distinguish elements according to their relative position in the sequence, which is essential for 
understanding the temporal order of electric charge values and capturing the dependencies between them. 

 PE = PV + EV …(3) 

with PV: the positional vector and 

Fig. 4: The Transformer-Encoder framework.
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load data for the next day using data divided into 24-hour 
intervals. The encoder presented in this research paper is 
based on the Transformer architecture and will be compared 
with other models in the following section, as shown in Fig. 4.

The Transformer model is a neural network design that 
is frequently employed in Natural language processing. 
Nevertheless, its applications are not limited to language-
related tasks. One such application is electrical load 
prediction, where the Transformer model can be effectively 
utilized. The Transformer Encoder design is a stack of 
residual encoder blocks in a more formal sense. During 
training, the transformer-based encoder maps the input 
sequence to a contextualized encoding sequence.

The encoder block begins with a bidirectional self-
attention layer, followed by two feedback layers. Various 
implementations have been explored to optimize performance 
on time-series data, each customizing its methods to meet 
specific needs. A crucial adaptation has been introduced to 
the attention map to effectively capture short-term patterns. 
This adjustment involves incorporating a window that 
confines backward attention, allowing focused analysis on 
nearby time sequences. Following a normalization step, 
the input sequence is transformed into a fixed-dimension 
vector for each element, ensuring uniform data preparation 
for consistent analysis. In the instance of electric charge 
prediction, each element represents a specific temporal value 
of electric charge, contributing to a meaningful representation 
for a more nuanced understanding of temporal patterns. 
Maintaining the chronological order of power consumption 
times is facilitated by positional encoding. Assigning a 
specific value to each element in the time sequence based 
on its relative position is essential for the model to capture 
temporal dynamics and accurately interpret variations in 
power consumption over time. Position-dependent cyclic 
patterns are made using the sin in eq. 1 and cos functions eq. 
2. The embedding of the sequence elements is then enhanced 
using these cyclic patterns. In doing so, it is possible for each 
element to have a distinct vector representation that includes 
both information and position.

 PE(pos2I)= sin(pos/2i/(10000d
model

)) …(1) 

 PE(pos2i + 1)= cos(pos/2I/(10000d
model

)) …(2) 

with PE: the calculated positional encoding.

Once the position vectors have been generated, they are 
combined with their respective elements in the sequence. 
This step involves summing the position vectors with the 
existing embedding. This allows position information to be 
combined with the characteristics of each element with the 
eq. 3. The addition of position vectors enables the model 
to distinguish elements according to their relative position 
in the sequence, which is essential for understanding the 

temporal order of electric charge values and capturing the 
dependencies between them.

 PE = PV + EV …(3)

with PV: the positional vector and

 EV: the embedding vector.

Each data point in the electric charge sequence will 
be converted by the encoding process of the Transformer 
into a context-dependent vector representation, taking into 
account any previous and potential future data points. The 
complex interactions between the numerous electric charge 
features are subsequently captured by the encoding blocks, 
which further enhance this contextual representation. This 
procedure is repeated until the last encoding block generates 
the contextual coding, which contains the crucial data 
required to make precise projections regarding future electric 
charges. Consequently, the model can identify the temporal 
correlations and patterns in the electrical charge data and then 
can make predictions of the future electrical charge demand.

After merging the inputs with the positional encoding eq. 
(3), the model will utilize a linear layer to create a collection 
of query vectors (key/value) for these features. Multi-headed 
attention employs a particular attention process known as 
self-attention.

V, K, and Q will just be identical copies of the embedding 
vector in the encoder case (plus positional encoding).

Batchsize * seql
en

 * d
model

 will be the sequence length. 
The integration vector is divided into N heads in multihead 
attention; giving them the dimensions batch and d

k 
will be 

the dimension of the queries and keys of the attention Eq.(4)

 Size * N * seqlen * (dmodel/N) …(4)

After the scalar product between the queries and the keys, 
a score matrix is formed to determine the significance and 
the relevance of various input sequence elements Eq. (5)

 Q * K = Scorematrix …(5)

Then, the scalar products are subjected to a softmax 
function eq. (6) to generate the score matrix. In order to create 
a weighting distribution over the keys in the sequence, the 
softmax function normalizes the scores so that the sum of 
all scores for each query is equal to 1.

 soƒtmax(Q * K/sqrt(dk))= attention(q,k,v) * V  …(6) 

where Soƒtmax is a function that normalizes attention 
scores, and sqrt(d

k
) is the square root of the dimension. 

After this, all attention head outputs are concatenated and 
multiplied by a projection weight matrix W

o 
of size (dmodel 

∗ dmodel) to obtain the final multi-head attention output
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 EV: the embedding vector. 

Each data point in the electric charge sequence will be converted by the encoding process of the Transformer into a 
context-dependent vector representation, taking into account any previous and potential future data points. The 
complex interactions between the numerous electric charge features are subsequently captured by the encoding 
blocks, which further enhance this contextual representation. This procedure is repeated until the last encoding block 
generates the contextual coding, which contains the crucial data required to make precise projections regarding 
future electric charges. Consequently, the model can identify the temporal correlations and patterns in the electrical 
charge data and then can make predictions of the future electrical charge demand. 

After merging the inputs with the positional encoding eq. (3), the model will utilize a linear layer to create a 
collection of query vectors (key/value) for these features. Multi-headed attention employs a particular attention 
process known as self-attention. 

V, K, and Q will just be identical copies of the embedding vector in the encoder case (plus positional encoding). 

 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵ℎ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∗ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒 ∗ 𝑑𝑑𝑚𝑚𝑚𝑚𝑑𝑑𝑠𝑠𝑠𝑠   will be the sequence length. The integration vector is divided into N heads in 
multihead attention; giving them the dimensions batch and dk will be the dimension of the queries and keys of the 
attention Eq.(4) 

 𝑆𝑆𝑠𝑠𝑆𝑆𝑆𝑆 ∗  𝑁𝑁 ∗  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒 ∗  (𝑑𝑑𝑚𝑚𝑚𝑚𝑑𝑑𝑠𝑠𝑠𝑠/𝑁𝑁) …(4) 

After the scalar product between the queries and the keys, a score matrix is formed to determine the significance 
and the relevance of various input sequence elements Eq. (5) 

 𝑄𝑄 ∗  𝐾𝐾 =  𝑆𝑆𝐵𝐵𝑚𝑚𝑆𝑆𝑠𝑠𝑚𝑚𝐵𝐵𝐵𝐵𝑆𝑆𝑠𝑠𝑆𝑆 …(5) 

Then, the scalar products are subjected to a softmax function eq. (6) to generate the score matrix. In order to create 
a weighting distribution over the keys in the sequence, the softmax function normalizes the scores so that the sum 
of all scores for each query is equal to 1. 

𝑠𝑠𝑚𝑚ƒ𝐵𝐵𝑚𝑚𝐵𝐵𝑆𝑆(𝑄𝑄 ∗  𝐾𝐾/𝑠𝑠𝑠𝑠𝑆𝑆𝐵𝐵(𝑑𝑑𝑑𝑑)) =  𝒂𝒂𝐵𝐵𝐵𝐵𝑠𝑠𝑒𝑒𝐵𝐵𝑠𝑠𝑚𝑚𝑒𝑒(𝑠𝑠, 𝑑𝑑, 𝑣𝑣)  ∗  𝑉𝑉   …(6)  

where Soƒtmax is a function that normalizes attention scores, and sqrt(dk) is the square root of the dimension.  

After this, all attention head outputs are concatenated and multiplied by a projection weight matrix Wo of size (dmodel 
∗ dmodel) to obtain the final multi-head attention output 

𝐴𝐴𝐵𝐵𝐵𝐵𝑠𝑠𝑒𝑒𝐵𝐵𝑠𝑠𝑚𝑚𝑒𝑒 𝑠𝑠 =  𝐶𝐶𝑚𝑚𝑒𝑒𝐵𝐵𝐵𝐵𝐵𝐵𝑠𝑠𝑒𝑒𝐵𝐵𝐵𝐵𝑠𝑠(𝑂𝑂1, 𝑂𝑂2, . . . , 𝑂𝑂ℎ)  ∗  𝑊𝑊𝑚𝑚                    …(7) 

where io is the output of the head attention i.  

      The neural network layer can learn to combine and transform input features to capture the complex patterns and 
non-linear relationships that influence target values. During model training, weights are iteratively adjusted using 
optimization techniques, such as gradient backpropagation, to minimize the gap between model predictions and 
actual target values. The representation that results from this contextual encoding will then be run through a fully 
linked layer to calculate the amount of electricity used. 

MATERIALS AND METHODS 

Settings 

It is essential to introduce in this subsection the setting parameters that lead to the experimental results of the paper. 

…(7)

Where i
o 

is the output of the head attention i. 
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The neural network layer can learn to combine and 
transform input features to capture the complex patterns 
and non-linear relationships that influence target values. 
During model training, weights are iteratively adjusted using 
optimization techniques, such as gradient backpropagation, 
to minimize the gap between model predictions and actual 
target values. The representation that results from this 
contextual encoding will then be run through a fully linked 
layer to calculate the amount of electricity used.

MATERIALS AND METHODS

Settings

It is essential to introduce in this subsection the setting 
parameters that lead to the experimental results of the paper.

Event-Cause Analysis

Different events show that consumption is not a linear 
and constant process; it can range from a political speech, 
a football match, an abrupt climate change, or simply a 
change of seasons. It is essential to find which are the most 
influencing factors and to understand them, and this allows 
our prediction system to be as efficient as possible. Accurate 
forecasts of electricity consumption enable service providers 
to better manage energy resources, savings, and maintenance 
operations and guarantee a stable, reliable power supply. 
Anticipating the demand will avoid a lack of production and 
subsequent load shedding since overproduction is simply 
a huge economic loss and a major source of pollution. 
Maintenance operations will be easier to do, and distribution 
will be more efficient. Good forecasting will have a positive 
effect on the environment and, therefore, on human health. 

Anticipating and effectively controlling these fluctuations 
in electricity consumption not only ensures reliable service 
but also contributes to energy efficiency and sustainable 
development while keeping CO2 levels acceptable enough 
to protect air quality. This enables service providers to 
choose wisely and deploy resources more effectively, 
which ultimately benefits suppliers, customers, and the 
environment.

An inventive strategy was used to achieve the objectives 
of forecasting energy consumption and maximizing the use 
of renewable energy sources and battery storage. To achieve 
this, the data were divided into 24-hour segments to represent 
days. This division allows a comprehensive examination of 
the correlations between energy consumption and various 
important factors. In order to give a clear picture of the 
temporal relationships and patterns present in the data, the 
aim is to assess the influence of past values in the time series 
on current or future values. Prediction plays a central role 
in the process of managing electricity consumption. Using 
machine learning algorithms, the system analyzes historical 
data to accurately anticipate electricity demand. A critical 
threshold is determined, which triggers a transition to 
renewable energy sources, such as solar or wind power, as 
soon as the prediction indicates that electricity consumption 
is close to or exceeds this threshold. This proactive strategy 
minimizes the use of polluting sources and reduces the CO2 
emissions associated with electricity production. In addition, 
in the event of excess production from renewable sources, 
excess electricity is efficiently stored in batteries. These 
batteries act as energy stores, enabling demand to be satisfied 
during periods of insufficient renewable production or peak 
consumption. In this way, the system ensures optimal use of 

 

Event-Cause Analysis 

Different events show that consumption is not a linear and constant process; it can range from a political speech, a 
football match, an abrupt climate change, or simply a change of seasons. It is essential to find which are the most 
influencing factors and to understand them, and this allows our prediction system to be as efficient as possible. 
Accurate forecasts of electricity consumption enable service providers to better manage energy resources, savings, 
and maintenance operations and guarantee a stable, reliable power supply. Anticipating the demand will avoid a lack 
of production and subsequent load shedding since overproduction is simply a huge economic loss and a major source 
of pollution. Maintenance operations will be easier to do, and distribution will be more efficient. Good forecasting will 
have a positive effect on the environment and, therefore, on human health. Anticipating and effectively controlling 
these fluctuations in electricity consumption not only ensures reliable service but also contributes to energy efficiency 
and sustainable development while keeping CO2 levels acceptable enough to protect air quality. This enables service 
providers to choose wisely and deploy resources more effectively, which ultimately benefits suppliers, customers, 
and the environment. 

An inventive strategy was used to achieve the objectives of forecasting energy consumption and maximizing the 
use of renewable energy sources and battery storage. To achieve this, the data were divided into 24-hour segments 
to represent days. This division allows a comprehensive examination of the correlations between energy consumption 
and various important factors. In order to give a clear picture of the temporal relationships and patterns present in 
the data, the aim is to assess the influence of past values in the time series on current or future values. Prediction 
plays a central role in the process of managing electricity consumption. Using machine learning algorithms, the 
system analyzes historical data to accurately anticipate electricity demand. A critical threshold is determined, which 
triggers a transition to renewable energy sources, such as solar or wind power, as soon as the prediction indicates 
that electricity consumption is close to or exceeds this threshold. This proactive strategy minimizes the use of polluting 
sources and reduces the CO2 emissions associated with electricity production. In addition, in the event of excess 
production from renewable sources, excess electricity is efficiently stored in batteries. These batteries act as energy 
stores, enabling demand to be satisfied during periods of insufficient renewable production or peak consumption. In 
this way, the system ensures optimal use of renewable energies, avoiding overproduction and responding 
dynamically to fluctuations in demand. Integrating prediction, transition to renewable energies, and electricity storage, 
this process offers a comprehensive approach to reducing CO2 emissions from electrical consumption while 
guaranteeing a reliable and sustainable energy supply. 

 
Fig. 5: The correlation results.
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renewable energies, avoiding overproduction and responding 
dynamically to fluctuations in demand. Integrating 
prediction, transition to renewable energies, and electricity 
storage, this process offers a comprehensive approach to 
reducing CO2 emissions from electrical consumption while 
guaranteeing a reliable and sustainable energy supply.

The outcome in Fig. 5 amply demonstrates that there is 
a very strong correlation between the database’s variables. 
A linear link and a strong relationship between the variables 
were discovered through this statistical investigation, 
which can be used to reduce the amount of data needed 
for future research and make forecasting easier. Electricity 
consumption patterns vary according to the day, season, and 
year. In summer, when temperatures rise, demand increases 
in the afternoon, as residential and commercial spaces rely 
heavily on air conditioning. This translates into a higher 
overall hourly electrical load.

Conversely, during the winter months, the hourly 
electrical load is relatively stable but peaks in the morning 
and evening. These distinct patterns reflect the fluctuation 
in electricity consumption across different time periods, 
driven by factors such as climatic conditions and consumer 
usage habits. Understanding these dynamics is essential for 
effectively managing energy resources and implementing 
strategies to optimize power generation and distribution.

In addition, electricity consumption follows a daily 
cycle, with peak demand occurring at a given time of day 
(depending on the season) and then declining in the late 
evening. This fluctuation in electricity demand is due to 
daily habits of energy use by households and companies but 
is also influenced by weather conditions. Due to variations 
in weather conditions and the types of electrical equipment 
used, the overall quantity and trend of total electricity demand 
fluctuates from year to year.

Here are some curves of average consumption during the 
seasons to back up these claims.

 Winter: The Fig. 6 shows the consumption trends during 
the winter months. This season is characterized by lower 
daylight hours and longer evenings. Consequently, the peak 
in electricity use happens around 8 p.m., reflecting the higher 
demand in the evening.

 Summer: Fig. 7 represents the summer consumption pat-
tern, which is characterized by the habits and life routines 
of Algerian citizens compared to other seasons. As a result, 
consumption curves show significant variations. In the morn-
ing, there is a significant drop in electricity consumption, 
probably due to reduced activity in the early hours of the 
day. However, around 12 o’clock, consumption rises signif-
icantly, probably because it is too hot. Another interesting 
observation is a minor shift in the peak, which occurs at 10 
p.m., indicating a higher demand for electricity during the 
evening hours. These variations highlight the unique con-
sumption behavior during the summer season, reflecting the 
specific needs and routines of Algerian citizens during this 
period.

Spring: With more daylight hours than in winter, spring 
brings a remarkable change in peak electricity consumption. 
This change is illustrated by Fig. 8, which shows that the 
peak is at 10 p.m. This change in peak time reflects the shift 
in energy consumption trends due to the lengthening of the 
day and the beginning of night-time activities. Spring’s 
longer days allow for more outdoor activities and later 
working hours, shifting the peak consumption period to 
later in the day.

Autumn: In autumn, electricity consumption peaks at 8 pm. 
This is because the days gradually resemble those of winter, 
as illustrated in Fig. 9. Shorter daylight hours and colder 
temperatures lead to changes in consumer behavior, resulting 
in higher electricity consumption during the evening hours. 
The combination of winter and summer factors influences 
the consumption profile during autumn, resulting in a peak 
at 8 pm.
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Fig. 5: The correlation results. 

The outcome in Fig. 5 amply demonstrates that there is a very strong correlation between the database’s 
variables. A linear link and a strong relationship between the variables were discovered through this statistical 
investigation, which can be used to reduce the amount of data needed for future research and make forecasting 
easier. Electricity consumption patterns vary according to the day, season, and year. In summer, when temperatures 
rise, demand increases in the afternoon, as residential and commercial spaces rely heavily on air conditioning. This 
translates into a higher overall hourly electrical load. 

Conversely, during the winter months, the hourly electrical load is relatively stable but peaks in the morning and 
evening. These distinct patterns reflect the fluctuation in electricity consumption across different time periods, driven 
by factors such as climatic conditions and consumer usage habits. Understanding these dynamics is essential for 
effectively managing energy resources and implementing strategies to optimize power generation and distribution. 

In addition, electricity consumption follows a daily cycle, with peak demand occurring at a given time of day 
(depending on the season) and then declining in the late evening. This fluctuation in electricity demand is due to daily 
habits of energy use by households and companies but is also influenced by weather conditions. Due to variations 
in weather conditions and the types of electrical equipment used, the overall quantity and trend of total electricity 
demand fluctuates from year to year. 

Here are some curves of average consumption during the seasons to back up these claims. 

• Winter: 

 

Fig. 6: The average consumption curve in winter. 

The Fig. 6 shows the consumption trends during the winter months. This season is characterized by lower 
daylight hours and longer evenings. Consequently, the peak in electricity use happens around 8 p.m., reflecting 
the higher demand in the evening. 

• Summer: 

Fig. 6: The average consumption curve in winter.

 

 

Fig. 7: The average consumption curve in summer. 

Fig. 7 represents the summer consumption pattern, which is characterized by the habits and life routines of 
Algerian citizens compared to other seasons. As a result, consumption curves show significant variations. In the 
morning, there is a significant drop in electricity consumption, probably due to reduced activity in the early hours 
of the day. However, around 12 o’clock, consumption rises significantly, probably because it is too hot. Another 
interesting observation is a minor shift in the peak, which occurs at 10 p.m., indicating a higher demand for 
electricity during the evening hours. These variations highlight the unique consumption behavior during the 
summer season, reflecting the specific needs and routines of Algerian citizens during this period. 

Spring: With more daylight hours than in winter, spring brings a remarkable change in peak electricity 
consumption. This change is illustrated by Fig. 8, which shows that the peak is at 10 p.m. This change in peak 
time reflects the shift in energy consumption trends due to the lengthening of the day and the beginning of night-
time activities. Spring’s longer days allow for more outdoor activities and later working hours, shifting the peak 
consumption period to later in the day. 

 

Fig. 8: The average consumption curve in spring. 

Autumn: In autumn, electricity consumption peaks at 8 pm. This is because the days gradually resemble those of 
winter, as illustrated in Fig. 9. Shorter daylight hours and colder temperatures lead to changes in consumer 
behavior, resulting in higher electricity consumption during the evening hours. The combination of winter and 
summer factors influences the consumption profile during autumn, resulting in a peak at 8 pm. 

As a result, seasonal influence becomes a key element to consider. Detailed observation of electricity 
consumption profiles for each season demonstrates the significant impact of seasonal variations. These seasonal 
differences, clearly visible in electricity consumption patterns, are crucial for refining predictive models. Taking these 
seasonal variations into account, the models can more accurately anticipate fluctuations in demand, enabling more 
efficient energy management and a consequent reduction in the CO2 emissions associated with electricity generation. 

Fig. 7: The average consumption curve in summer.
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As a result, seasonal influence becomes a key element 
to consider. Detailed observation of electricity consumption 
profiles for each season demonstrates the significant impact 
of seasonal variations. These seasonal differences, clearly 
visible in electricity consumption patterns, are crucial 
for refining predictive models. Taking these seasonal 
variations into account, the models can more accurately 
anticipate fluctuations in demand, enabling more efficient 
energy management and a consequent reduction in the CO2 
emissions associated with electricity generation.

RESULTS AND DISCUSSION

The Transformer-Encoder model is compared to many 
other models in this study to evaluate its performance, 
particularly in predicting electricity consumption while 
using and considering the influence of historical data. The 
models were evaluated using metrics frequently used in time 
series analysis, including mean absolute error (MAE), mean 
square error (MSE), root mean square error (RMSE), and 
accuracy (100- (mean absolute percentage error (MAPE) 
(Boylan 2011))). These parameters serve as standard metrics 
for estimating model performance in catching and predicting 

the patterns of time series data. MAPE measures the average 
percentage deviation between predicted and actual values. 
Subtracting MAPE from 100 gives the precision measure, 
which represents the proportion of accurate predictions 
in percentage terms. This formulation enables a better 
interpretation of accuracy. The results are resumed in Table 
1 and Fig. 10, respectively.

The comparison presented in Table 1 and Fig. 10 
highlights the significant relationship between accurate 
power consumption forecasts and the use of appropriate 
forecasting models. As with any deep learning model, 
various factors, such as data quality and quantity, as well 
as model parameters, contribute to model performance and 
results. It is important to note that the Transformer-Encoder 
model achieves a remarkably high level of accuracy during 
training. Consequently, it highlights the potential for the 
Transformer model to be applied and adapted to meet such 
forecasting challenges.

Comparing this time series model with other architectures, 
it is interesting to note that transformers and CNNs achieved 
similar results. While CNNs are reputed for their ability to 
extract relevant features, transformers performed equally 
well in predicting power consumption. This finding 
highlights the ability of transformers to capture the complex 
temporal relationships inherent in time series.

On the other hand, when comparing RNNs with 
transformers, the main differentiating factor is the presence 
of parallelism in RNNs. Transformers may process several 
input sequences at once in contrast to RNNs, which only 
process one input sequence at a time in a sequential fashion. 
Transformers have more ability to recognize and represent 
complicated relationships due to this parallelism. In RNNs, 
the learned representation of the input sequence must be 
compressed into a single state vector before processing 
subsequent sequences. The model may not be able to 
accurately capture long-term dependencies due to this 
compression. RNNs can also experience gradient explosion 
issues, which further limits their capacity to manage long-
term dependencies, even when using cutting-edge methods 
like LSTMs. Transformers, on the other hand, have a much 
wider bandwidth, enabling them to efficiently capture 
long-term dependencies and model relationships across 
the entire sequence. When it comes to managing long-

 

 

Fig. 7: The average consumption curve in summer. 

Fig. 7 represents the summer consumption pattern, which is characterized by the habits and life routines of 
Algerian citizens compared to other seasons. As a result, consumption curves show significant variations. In the 
morning, there is a significant drop in electricity consumption, probably due to reduced activity in the early hours 
of the day. However, around 12 o’clock, consumption rises significantly, probably because it is too hot. Another 
interesting observation is a minor shift in the peak, which occurs at 10 p.m., indicating a higher demand for 
electricity during the evening hours. These variations highlight the unique consumption behavior during the 
summer season, reflecting the specific needs and routines of Algerian citizens during this period. 

Spring: With more daylight hours than in winter, spring brings a remarkable change in peak electricity 
consumption. This change is illustrated by Fig. 8, which shows that the peak is at 10 p.m. This change in peak 
time reflects the shift in energy consumption trends due to the lengthening of the day and the beginning of night-
time activities. Spring’s longer days allow for more outdoor activities and later working hours, shifting the peak 
consumption period to later in the day. 

 

Fig. 8: The average consumption curve in spring. 

Autumn: In autumn, electricity consumption peaks at 8 pm. This is because the days gradually resemble those of 
winter, as illustrated in Fig. 9. Shorter daylight hours and colder temperatures lead to changes in consumer 
behavior, resulting in higher electricity consumption during the evening hours. The combination of winter and 
summer factors influences the consumption profile during autumn, resulting in a peak at 8 pm. 

As a result, seasonal influence becomes a key element to consider. Detailed observation of electricity 
consumption profiles for each season demonstrates the significant impact of seasonal variations. These seasonal 
differences, clearly visible in electricity consumption patterns, are crucial for refining predictive models. Taking these 
seasonal variations into account, the models can more accurately anticipate fluctuations in demand, enabling more 
efficient energy management and a consequent reduction in the CO2 emissions associated with electricity generation. 

Fig. 8: The average consumption curve in spring.
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Fig. 9: The average consumption curve in autumn.  

RESULTS AND DISCUSSION 

The Transformer-Encoder model is compared to many other models in this study to evaluate its performance, 
particularly in predicting electricity consumption while using and considering the influence of historical data. The 
models were evaluated using metrics frequently used in time series analysis, including mean absolute error (MAE), 
mean square error (MSE), root mean square error (RMSE), and accuracy (100- (mean absolute percentage error 
(MAPE) (Boylan 2011))). These parameters serve as standard metrics for estimating model performance in catching 
and predicting the patterns of time series data. MAPE measures the average percentage deviation between predicted 
and actual values. Subtracting MAPE from 100 gives the precision measure, which represents the proportion of 
accurate predictions in percentage terms. This formulation enables a better interpretation of accuracy. The results 
are resumed in Table 1 and Fig. 10, respectively. 

Table 1: Obtained model results. 

Models Accuracy MAE MSE RMSE 

RNN 0.89 1.34 3.20 1.72 

Transformer-
Encoder 

0.98 0.71 0.26 0.53 

CNN 0.98 0.09 0.09 0.099 

LSTM 0.98 0.28 0.62 0.8 

Fig. 9: The average consumption curve in autumn. 
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term dependencies and processing information effectively, 
transformers clearly outperform RNNs due to their parallel 
processing and capacity to handle all tokens directly. 
Transformers can effectively model complicated patterns 
and relationships within sequences, making them a powerful 
alternative for applications involving time-series data.

According to all that has been discussed, it becomes 
evident that transformers, both in their general form and 
through customized architectures, have a profound impact 
on the forecast of electrical consumption. Their attention and 
parallel processing mechanisms enable them to effectively 
understand the overall context and interrelationships within 
time series. This enables processors to make accurate 
forecasts and provide valuable information on future 
consumer trends. Overall, transformers are emerging as a 
transformational method for predicting energy use. Their 
ability to take advantage of the temporal aspect of the 
problem and their global modeling capabilities make them 
an effective tool for correctly forecasting future consumption 
patterns and supporting informed decision-making in 
the energy sector. This capability becomes crucial in the 
context of reducing CO2 emissions linked to electricity 
production. Accurate forecasting of electricity consumption 
enables more precise planning of energy activities. The 
electricity production process has a significant impact on 
the relationship between electricity consumption forecasts 
and CO2 emissions. In other words, accurate forecasting of 
energy needs has a direct impact on carbon dioxide emissions 
by improving the production, delivery, and use of electricity. 
Table 2 shows the CO2 emission results, illustrating predicted 
values of the Transformer over a few hours of a day, as an 
example.

A significant observation emerges regarding the direct 
link between calculated CO2 emissions and predicted values: 
an increase in consumption is directly correlated with an 
increase in CO2 emissions. To illustrate this mathematically, 
the relationship between electricity consumption (E), CO2 
emissions (CO2), and greenhouse gases can be represented 
by the following equation:

 CO
2
  = E * EF …(8)

where CO2 represents carbon dioxide emissions, E 
represents electricity consumption, and EF (Emission Factor) 
represents the emissions conversion factor specific to the 
electricity source. 

The EF depends on the source of electricity used to 
produce the energy. For example, if the electricity is mainly 
produced from gas, the emission factor will be high due to 
the high CO2 emissions associated with gas combustion. 
On the other hand, if the electricity comes from renewable 
sources, the emission factor will be close to zero. Focusing 
on Algeria, the EF for gas use in the country was set at 548 
gCO2/kWh for this study. Although this value seems modest 
on a global scale, it is of significant importance for the 
country’s environmental health. It is essential to recognize 
that all production has an impact on the global environment, 
as evidenced by global pollution reaching 32,252 Mt in 
2020, according to the International Energy Agency (IEA) 
(Palaian Premalalitha & Balraj 2024). Even if these values are 

 

 

Fig. 10: Representation of the Model’s results. 

The comparison presented in Table 1 and Fig. 10 highlights the significant relationship between accurate power 
consumption forecasts and the use of appropriate forecasting models. As with any deep learning model, various 
factors, such as data quality and quantity, as well as model parameters, contribute to model performance and results. 
It is important to note that the Transformer-Encoder model achieves a remarkably high level of accuracy during 
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equally well in predicting power consumption. This finding highlights the ability of transformers to capture the complex 
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On the other hand, when comparing RNNs with transformers, the main differentiating factor is the presence of 
parallelism in RNNs. Transformers may process several input sequences at once in contrast to RNNs, which only 
process one input sequence at a time in a sequential fashion. Transformers have more ability to recognize and 
represent complicated relationships due to this parallelism. In RNNs, the learned representation of the input sequence 
must be compressed into a single state vector before processing subsequent sequences. The model may not be able 
to accurately capture long-term dependencies due to this compression. RNNs can also experience gradient explosion 
issues, which further limits their capacity to manage long-term dependencies, even when using cutting-edge methods 
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long-term dependencies and model relationships across the entire sequence. When it comes to managing long-term 
dependencies and processing information effectively, transformers clearly outperform RNNs due to their parallel 
processing and capacity to handle all tokens directly. Transformers can effectively model complicated patterns and 
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According to all that has been discussed, it becomes evident that transformers, both in their general form and 
through customized architectures, have a profound impact on the forecast of electrical consumption. Their attention 
and parallel processing mechanisms enable them to effectively understand the overall context and interrelationships 
within time series. This enables processors to make accurate forecasts and provide valuable information on future 
consumer trends. Overall, transformers are emerging as a transformational method for predicting energy use. Their 
ability to take advantage of the temporal aspect of the problem and their global modeling capabilities make them an 
effective tool for correctly forecasting future consumption patterns and supporting informed decision-making in the 
energy sector. This capability becomes crucial in the context of reducing CO2 emissions linked to electricity 

Fig. 10: Representation of the Model’s results.

Table 2: CO2 Emission results.

Hours 1h 6h 12h 17h 21h

Predicted Values 7250 6250 6877 7145 7840

CO2 Emission 3973 3768 3916 3739 4296
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expressed in grams, the commitment to reducing greenhouse 
gas emissions is crucial, particularly through the increased 
integration of renewable energies. It is important to note, 
however, that countries are not isolated entities. Without 
the exceptional growth in renewable energies, electric 
vehicles, heat pumps, and energy efficiency technologies, 
the increase in CO2 emissions would have been almost three 
times higher. These advances, therefore, play a crucial role 
in the fight against rising global emissions, demonstrating 
the importance of sustainable initiatives. Awareness of 
these emissions specific to Algeria provides a crucial basis 
for developing more sustainable energy policies aimed at 
minimizing environmental impact while improving health 
on a national scale.

CONCLUSIONS

Energy is the most important resource in the economy. 
There can be no economic development without energy 
control, and wasting energy is a disaster for the economy 
and the environment. One of the ways of controlling 
electrical energy is to forecast its consumption, which 
not only optimizes production and allows us to anticipate 
equipment maintenance but also helps us to move towards a 
more sustainable energy future. To achieve these objectives, 
it is necessary to apply statistical processing techniques 
to consumption data, enabling historical trends to be 
understood and interpreted. These findings enable a range 
of models, including linear and non-linear approaches, 
to be used to accurately explain and predict electricity 
consumption patterns that will play a fundamental role in 
reducing CO2 emissions and promoting renewable energies. 
Through statistical processing, companies can gain a better 
understanding of their energy consumption patterns, enabling 
them to make informed decisions about energy management 
strategies. Accurate prediction of electricity demand enables 
production to be adapted in real-time, consequently reducing 
the use of CO2-emitting energy sources, particularly during 
peak hours. This method will encourage more efficient 
management of energy resources and will also directly reduce 
greenhouse gas emissions, thus making an active contribution 
to the fight against climate change. The proposed models are 
deep learning models such as CNN, RNN, LSTM, and the 
transformer. The different used profiles are known as well as 
daily, seasonal, and yearly can catch the Algerian behavior. 
However, the obtained results are very promising, with up 
to 98 percent of good prediction for CNN, 98% for RNN, 
98% for LSTM, and 98% for Transformers. The integration 
of renewable energies into the energy mix is a crucial step 
towards a sustainable future. By anticipating energy needs, 
accurate prediction of electricity consumption makes it 
possible to optimize the use of these clean sources. A deeper 

transition to renewable energies becomes feasible when 
forecast reliability reaches a defined threshold. The transition 
is accompanied by a significant reduction in dependence 
on fossil fuels. Intelligent management of surplus energy is 
another essential pillar. The use of batteries to store surplus 
electricity during periods of low demand offers a practical 
solution for smoothing out variations in production. This 
approach guarantees a stable supply of clean energy. This 
fusion of capabilities enables a more comprehensive and 
powerful approach to forecast electricity consumption, 
enabling informed decisions to optimize this energy, reduce 
costs, and contribute to a greener, more sustainable future.
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