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ABSTRACT

Air quality is directly associated with the health of society. So, it becomes essential to forecast air 
pollution, which assumes an imperative part in air pollution warnings and control. A time-series simulation 
approach was adapted for the forecasting of monthly mean ambient air pollutants (PM2.5, O3, NO2) 
concentration and Aerosol Optical Depth (AOD) at an urban traffic site (Mathura Road, CSIR-CRRI) in 
New Delhi, India. Satellite-based aerosol loading (AOD550) retrieved from the Terra MODIS (Collection 
6) enhanced Deep Blue (DB) algorithm was used for further analysis. The analysis considered the 
average monthly mean concentration of air pollutants and AOD between 2012-2017 and, simulates 
the concentrations of PM2.5, O3, NO2, and AOD for the same period and then forecasts air quality for 
the years 2020-2023. The forecasted results were validated with 24 months of in-situ and satellite data 
from 2018-to and 2019. In the year 2020, observed and simulated results are in lower agreement due 
to the shutdown of anthropogenic activities to combat pandemic situations. Otherwise, modeled and 
forecasted results are in good harmony with the in-situ and satellite observations. The results also 
signify that the time series Autoregressive Integrated Moving Average (ARIMA) modeling approach can 
be an effective and simple tool for air pollution simulation and future forecast. The results are evocative 
concerning the forecast of near future aerosol loading information and will also be profound to address 
the problems.  

INTRODUCTION 

Indian cities are the epicenter of economic activity and are 
also on the front lines of some of the world’s worst air quality 
(Choudhary & Gokhale 2016, 2019). Industrialization and 
unchecked population growth have resulted in increased 
resource consumption, further amplifying the problem of air 
pollution (Kumar et al. 2021, Pratap et al. 2020, Choudhary et 
al. 2020). Millions of casualties happened worldwide because 
of the worst air quality (Pandey et al. 2021). Air pollution 
remains one of the most important public health concerns 
across the globe for the last two decades, contributing to 
substantial premature mortality with a greater impact in de-
veloping nations (Balakrishnan et al. 2019). It is, therefore, 
important to provide time-to-time air quality forecasts at 
global, regional, and local scales to support public health 
authorities (Maji et al. 2021) and policy-makers and enable 

them to take timely preventative action (Jia et al. 2020) in the 
short term, long term and event-specific scenarios (Vadrevu 
et al. 2020) to combat the atmospheric pollutions (Kumar 
et al. 2018).

In India, geographical boundaries are also favorable and 
supportive of deteriorating air quality. It is observed in the 
post-monsoon and winter seasons (October to November 
and December to February) (Kumar et al. 2020c, Prabhu et 
al. 2019). Despite this, some episodic events are also well 
known in India that lead to extremely poor air quality in a 
particular period of the year (Kumar et al. 2019, 2020a). For 
example, the rice-wheat crop buildup consumption (CRB) 
happens two times every year, in April–May wheat crop/Ravi 
crop and October–November rice crop/Kharif crop, respec-
tively. These periods worsen air quality in many Indian cities 
(Sarkar et al. 2018). Post-monsoon (October-November) 
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period in India has other episodic events (such as Diwali and 
biomass burning), and adverse meteorology worsens the air 
quality. Diwali is associated with burning fire crackers in bulk 
(Singh et al. 2010) and massive crop residue burning increas-
es the immense load on the local atmosphere. Faiz &Sturm 
(2000) have assessed that about 10% of respiratory ailments 
out of thousands of detailed cases are related to climatic con-
tamination every year during these episodic events in Delhi. 
The Diwali episode lifts PM10 and total suspended particulate 
concentration two to three times in Hisar city, India (Ravin-
dra et al. 2019). Likewise, Barman et al. (2008) additionally 
revealed that an episodic event Diwali increases pollutants 
PM10, SO2, and NOx concentrations 5.7, 6.6, and 2.7 times, 
respectively, in contrast to any regular day in Lucknow, India.

In the year 2020 to prevent the COVID-19 transmission, 
a worldwide lockdown was announced at a different time of 
the year, and the lockdown imprints were observed in the 
ambient atmosphere (Kumar et al. 2020b). In India, addi-
tionally, air contamination levels dropped altogether with 
the inconvenience of the 21-day lockdown. To understand 
the response to complete lockdown, many scientific reports 
were published to demonstrate the different aspects of air 
quality all about changes (Chen et al. 2020, Muhammad et 
al. 2020, Tobíaset al. 2020, Xu et al. 2020). A significant 
decrease in PM2.5, NO2, and CO concentration before and 
after lockdown (21-days) were reported by Srivastava et al. 
(2020) for two Indian cities.  Kotnala et al. (2020) stated a 
14-time reduction in NOx concentration (342 to 24 ppb) in 
New Delhi during the lockdown. 

Forecasting, in all aspects, is always very important to 
formulate the policies to control the situation and condition. 
Time series analysis is widely implied over the long-term 
data for comparative analysis and predicts current trends 
and future forecasts (Soni et al. 2015). The utilization of 
time series examination depends on the idea that there are 
some interior trends and patterns inside the data, for exam-
ple, autocorrelation, patterns, or occasional variety. Several 
analyses applied the time-series approach to address the air 
quality by utilizing autoregressive, moving normal models 
and a mingle of both, known as an autoregressive integrated 
moving average (ARIMA) (Abish & Mohana 2013, Soni 
et al. 2014). ARIMA stays as the mainstream model these 
days due to its adaptability in addressing various sorts of 
time arrangements, autoregressive (AR), moving normal 
(MA), and autoregressive moving normal model (ARIMA), 
it can be defined as ARIMA (p, d, q). When the dataset is 
non-stationary, the difference will take part in stationary 
data (AbdRahman et al. 2013). The three stages viz. distin-
guish verification; assessment and analytic checking assure 
the precision of time series outcomes (Kumar et al. 2018). 

ARIMA depends on the Box–Jenkins approach; it is broadly 
applied in air quality investigations (Box & Jenkins 1976). 
The insights concerning the ARIMA depicted else ware 
(McBerthouex & Brown 2002). For time series examination, 
around 50-100 data points are required (Box & Jenkins 1976, 
Milionis & Davies 1994). Several researchers considering 
the impact of meteorological components and apply ARIMA 
models to anticipate submicron molecule fixations (Jian et 
al. 2012), day-by-day normal PM10 focuses (Liu 2009), and 
ozone fixation in metropolitan and provincial territories 
(Duen˜as et al. 2005). 

The ARIMA model has widespread application due to its 
flexibility (Lai et al. 2019, Li et al. 2020, Singh et al. 2020). 
Therefore, this study’s main objectives were as follows, 1) 
to forecast the future trend of pollutants (PM2.5, O3, and 
NO2) and AOD, just after the pandemic episode by applying 
the ARIMA tool, and 2) to perform a comparative analysis 
of measured and simulated observations, 3) validation of 
forecasted results with 25% data (monthly mean of the year 
2018-2019, 24 points). 4) Further study will also characterize 
the trends and variability of the year 2020, emphasizing the 
lockdown period. 

MATERIALS AND METHODS

Data Source

A stationary stochastic ARIMA modeling approach was ap-
plied to forecast the monthly mean concentration of ambient 
air pollutants (PM2.5, O3, and NO2) and AOD for the urban 
area of New Delhi, India. The part of data (from 2012-2017) 
of air pollutants (PM2.5, O3, and NO2) have been obtained 
from the automated installed station at CSIR-Central Road 
Research Institute (CRRI), New Delhi and part of data obtained 
from CPCB (Central Pollution Control Board) India, for the 
CSIR-CRRI, New Delhi station for the year 2018-2020. The 
aerosol optical depth (AOD) at 550 nm was extracted daily 
for the period 2012 to 2020, from MODIS onboard the Terra 
satellite for the stations CSIR-CRRI (28.5517° N, 77.2750° 
E). MODIS measures spectral radiances from 0.55 μm for land 
with a resolution of 0.1° × 0.1° (https://earthobservatory.nasa.
gov/global-maps). The MODIS (Collection 6) enhanced Deep 
Blue (DB) AOD (Deep_Blue_Aerosol_Optical_Depth_550_
Land_Best_Estimate) of level 2, was used in this study. The 
24-h average time series data of ambient air pollutants (PM2.5, 
O3, and NO2) were averaged into monthly data, similarly daily 
AOD data were also averaged into monthly AOD then applied 
the ARIMA for the further analysis. 

Quality Control Approach

For quality affirmation, the study used two strategies: (i) 
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outlier recognition and gap-filling procedures were applied to 
improve the nature of the dataset (Jesus et al. 2020), and (ii) 
a manual exclusion of zero, negative and invalid information, 
after reviewing of the dataset. This was applied for the AOD 
dataset since missing values were greater than those applied 
for the AOD dataset since missing values were greater than 
the 365 data points (around 11% of total data). The pollutants 
PM2.5, O3, and NO2 have less than 1% missing values for the 
total assessment period since the gap-filling techniques are 
generally recommended when missing information rates are 
more prominent than 5% (Ottosen & Kumar 2019, Junger 
& De Leon 2015). Therefore, pollutants PM2.5, O3, and NO2 
were manually cleaned and used for the data analysis and 
interpretations. 

Time Series Approach: ARIMA

The ARIMA is a time series simulation method presented 
by Box & Jenkins in the 1970s and was applied for the 
current and near-future forecast of the aerosol load to the 
atmosphere (Kantz & Schreider 1997). Time-series data of 
the simulation object are considered a stochastic sequence, 
and this sequence is fitted with some numerical models. 
When the model is recognized, the future qualities can be 
anticipated over a wide time period (Kucharski et al. 2020). 
ARIMA can be defined as ARIMA (p, d, q), a model can be 
partitioned into three sorts, details are given else were (Kumar 
et al. 2015). The ARIMA model can discover the qualities 
and patterns of the time-series information and speculate the 
future behavior effectively (Kumar et al. 2018).

The time series ARIMA approach was applied to assess 
the air quality trend before and after the Pandemic episode 
and the near future air pollutants forecast. The section first 
portrays the 2012-2017 monthly variation of selected pollut-
ants, section two is characterizing the pollutants’ behavior of 
the year 2020 (Pandemic year), section three is demonstrating 
the ARIMA simulation and forecasted results, further com-
parative interpretation of measured, simulated results, and 
validation data, forecasted observations were described. Such 
figures are particularly useful in outlining proper approaches 
for air quality administration (Kumar et al. 2018). The month-
ly data for the year 2012-2017 (total of 72 data points, 75% 

of data) was used for the simulation, and monthly data for the 
year 2018-2019 (25% of data) was used for the validation of 
the forecasted results (Kumar & Jain, 2009). The extraction 
and assessment of model boundaries are accomplished by 
utilizing the ARIMA by using the SPSS package. Different 
criteria were used to evaluate the model fits and goodness, 
explained else were (Gocheva-Ilieva et al. 2014).

RESULTS AND DISCUSSION

Year to Year Variation of Pollutants

Fig. 1 demonstrates the monthly variation of pollutants PM2.5, 
O3, NO2, and AOD for the period 2012 to 2017. The cyclic 
and seasonality patterns are very distinct in the figure, par-
ticularly for the PM2.5 and AOD (Kumar et al. 2019, 2020a). 
Highest emission peaks observed for post-monsoon period 
(October-November, as per Fig. 1 post-monsoon months are: 
10-11, 23-24, 35-36, 47-48, 59-60, 71-72). In the monsoon 
season, pollutants concentration drops to a minimum, the 
dropping peaks are also very apparent corresponding to the 
monsoon season (July-September, as per Fig. 1 monsoon 
months are: 7-9, 19-21, 31-33, 43-45, 55-57, 67-69). The 
O3 and NO2 also follow the cyclic seasonality trend, but the 
peaks get flattened with the proceeding years. 

The descriptive statics of the data is depicted in Table 1. 
The higher skewness value (0.695 to 1.5) indicates that data 
are in non-symmetrical distribution. Likewise, the kurtosis 
ranges of 0.511 to 2.97 indicate leptokurtic distribution. The 
time series simulation approach, ARIMA was applied to the 
2012-2017 (75% of data) data set for the future forecast. It 
was also observed from the data that PM2.5 concentrations 
are much higher (greater than double of NAAQS limit) as 
compared to NAAQS annual limit (40 μg.m-3) whereas the 
annual concentration of NO2 and O3 concentration is double 
the annual and 8-hourly NAAQS limit (19.48 ppb, 46.69 
ppb), respectively.

Pollutants Trend in 2020 

To break the transmission of COVID-19 worldwide, the 
lockdown was forced at a different time in 2020. In In-
dia, the Government deployed a complete lockdown that 

Table 1: Descriptive statistics of air pollutants.

Variables Observations (N) Minimum Maximum Mean Skewness Kurtosis

PM2.5 67 16.76 295.20 111.58 0.82 1.21

NO2 67 5.12 123.92 42.03 1.50 2.95

O3 66 23.81 134.05 63.12 0.70 0.53

AOD550 71 0.42 1.56 0.82 0.87 0.51
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The O3 and NO2 also follow the cyclic seasonality trend, but the peaks get flattened with the 

proceeding years.  

 
Fig. 1: The monthly variation of pollutants PM2.5, AOD, NO2, and O3 for 2012-2017. 

 

The descriptive statics of the data is depicted in Table 1. The higher skewness value 

(0.695 to 1.5) indicates that data are in non-symmetrical distribution. Likewise, the kurtosis 

ranges of 0.511 to 2.97 indicate leptokurtic distribution. The time series simulation approach, 

ARIMA was applied to the 2012-2017 (75% of data) data set for the future forecast. It was also 

observed from the data that PM2.5 concentrations are much higher (greater than double of 

NAAQS limit) as compared to NAAQS annual limit (40 µg.m-3) whereas the annual 

Fig. 1: The monthly variation of pollutants PM2.5, AOD, NO2, and O3 for 2012-2017.

stopped all the anthropogenic activities, which are the 
main source of air pollution in the atmosphere. Numerous 
published researches explained air quality with respect to 
lockdown (Kumar et al. 2020b). Indian government de-
ployed complete lockdown for 21 days from 25th March, 
then slowly released the term and condition of lockdown 
until 31st May 2020. Therefore, very sharp drops in pollut-
ants concentration were observed during 21 days of com-

plete lockdown. Fig. 2 depicted the trend of pollutants and 
AOD in the year 2020, the lockdown period is highlighted 
as yellow. After the lockdown period, due to the monsoon 
season wash-out, significant pollutant concentration drops 
were observed. The average concentration of the pollutants 
PM2.5, NO2, O3, and AOD in the year 2020 was found as 
88.77±74 μg.m-3; 38.40±29.40 ppb; 18.40±9.12 ppb and 
0.73±0.45, respectively. The maximum concentration is 
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Fig. 2: Daily-based trend of PM2.5, MODIS AOD550, NO2, and O3 during 2020, the lockdown 

period is highlighted as yellow. 

The data are presented in Table 2 for a better relative overview. The pre-lockdown and 

lockdown pollutants concentration demonstrated that the concentration of the selected pollutant 

Fig. 2: Daily-based trend of PM2.5, MODIS AOD550, NO2, and O3 during 2020, the lockdown period is highlighted as yellow.
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reported as 473.92 μg.m-3, 151.27ppb, 82.84 ppb; 2.80 
for PM2.5, NO2, O3, and AOD, respectively, and minimum 
concentration of PM2.5, NO2, O3, and AOD is 12.05 μg.m-3, 
6.18 ppb, 3.90 ppb and 0.66, respectively. The lockdown 
duration average concentration was 46.65±23.42 μg.m-3, 
16.58±3.63 ppb; 15.69±4.41 ppb; and 0.46, respectively. 
The maximum lockdown concentration of PM2.5, NO2, O3, 
and AOD was 102.23 μg.m-3, 29.32 ppb, 28.72 ppb, and 
1.62, respectively and minimum lockdown concentrations 
were reported as 19.22 μg.m-3, 8.85 ppb, 11.22 ppb and 
0.11, respectively. 

The data are presented in Table 2 for a better relative 
overview. The pre-lockdown and lockdown pollutants con-
centration demonstrated that the concentration of the selected 
pollutant drops to half as compared to the past 9 years’ con-
centration, except for AOD. In case AOD magnitude drops 
are around 25%.  

Time Series Simulation and Forecast

The ARIMA model was applied for simulation and fore-
casting pollutants concentration (PM2.5, NO2, and O3) and 
MODIS AOD for CSIR-CRRI, Delhi-Mathura Road, urban 
area, New Delhi. The analysis considered the monthly aver-
age concentration of pollutants and AOD for 2012-2017 and 
simulated the monthly concentration of pollutants and AOD 
and forecast the pollutants and AOD for the period of forecast 
the pollutants AOD for 2020-2023. The large variations in 
PM2.5 values moderate variations in MODIS AOD; however, 
low variations were found in NO2 and O3 values (Fig. 3). The 
observed and simulated values of pollutants and AOD are lies 
within the upper control limit (UCL) and lower control limit 

(LCL) boundary, indicating a satisfactory agreement between 
in-situ measurement and ARIMA-based simulations.

The measured and simulated observation trends for air 
pollutants (PM2.5, NO2, and O3) and MODIS AOD550 are 
found in good agreement, as depicted in Fig. 4. It is clearly 
shown that the monthly AOD values are found higher during 
pre-monsoon (May to June) and decreasing during monsoon 
(July to September) and again, increasing trends occur during 
post-monsoon (October to November) and winter (December 
to February) months, of almost every year. However, higher 
concentrations of PM2.5 were found during post-monsoon 
mainly due to biomass burning transported from the Punjab 
and Haryana states and during winter months due to trans-
portation, biomass/wood burning, and fog.

Fig. 5 depicts the trends of the residuals ACF and PACF, 
demonstrating that all points are randomly distributed, and 
suggesting that model outcomes are satisfactory. Also, each 
pollutant’s residual autocorrelations are small and are within 
the significance bounds limit. 

The statistical significance of the model was evaluated 
by Normalized Bayesian Information Criterion (BIC), the 
R–square, Root Mean Square Error (RMSE), Mean Absolute 
Percentage Error (MAPE), Mean Absolute Error (MAE), and 
Ljung – Box Q statistic were used to test for the adequacy 
and statistical appropriateness of the model. The Ljung–Box 
Statistic of the model values for Normalized BIC lies between 
-4.393 to 7.062 for the 16 degrees of freedom (Table 3). 

The stationary-R2 also depicts the good fit between 
observed and simulated values. ARIMA performed better 
for PM2.5 (0.752) and NO2, a lower value of R2 indicates 
moderate fit (R2: 0.585) as compared to other pollutants. 

Table 2: Overview of the pre-lockdown period, lockdown year, and lockdown period.

Variables Pre-lockdown
(2012-2017)

Lockdown year 2020 Lockdown period of 2020

AOD Avg 0.60 ±0.05 0.73±0.45 0.46±.26

Max 1.54 2.80 1.62

Min 0.21 0.66 0.11

PM2.5 Avg 111.58±53.69 88.77±74 46.65±19.9

Max 295.76 473.92 102.23

Min 16.2 12.05 19.22

NO2 Avg 13.93±3.40 38.40±29.40 16.58±4.82

Max 21.37 151.27 29.32

Min 9.62 6.18 8.85

O3 Avg 33.92±16.81 18.40±9.12 15.69±3.70

Max 76.45 82.84 28.72

Min 12.14 3.90 11.22
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The more or less similar values of the stationary-R2 and the 
R2 of all selected pollutants and AOD are indicating that the 
simulated model is reasonably good. Model fit statistics is 
given in Table 4.

The lower RMSE values (ranges of 0.105-32.084) be-
tween observed and simulated pollutants and AODs for a 
period of 2012-2017 are supportive of favorable results. 
The MAPE values are ranging 20-to 50, also indicating the 

 
Fig. 3: Comparison of ARIMA model simulations and forecasting (blue line) with observed 

PM2.5, NO2, O3, and MODIS AOD550 (red line). 

The measured and simulated observation trends for air pollutants (PM2.5, NO2, and O3) 

and MODIS AOD550 are found in good agreement, as depicted in Fig. 4. It is clearly shown that 

the monthly AOD values are found higher during pre-monsoon (May to June) and decreasing 

during monsoon (July to September) and again, increasing trends occur during post-monsoon 

(October to November) and winter (December to February) months, of almost every year. 

However, higher concentrations of PM2.5 were found during post-monsoon mainly due to 

biomass burning transported from the Punjab and Haryana states and during winter months due 

to transportation, biomass/wood burning, and fog. 

Fig. 3: Comparison of ARIMA model simulations and forecasting (blue line) with observed PM2.5, NO2, O3, and MODIS AOD550 (red line).

Table 3: Ljung Box statistics.

Normalized BIC Statistic DF Sig.

7.062 52.938 16 0.000

5.869 54.806 16 0.000

5.703 34.432 16 0.005

-4.393 23.177 16 0.109
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Fig. 4: Comparison of observed and simulated results of PM2.5, NO2, O3, and MODIS AOD550. 

Fig. 5 depicts the trends of the residuals ACF and PACF, demonstrating that all points 

are randomly distributed, and suggesting that model outcomes are satisfactory. Also, each 

pollutant's residual autocorrelations are small and are within the significance bounds limit.  

Fig. 4: Comparison of observed and simulated results of PM2.5, NO2, O3, and MODIS AOD550.

reasonability of the fitted model (Delurgio 1998). This indi-
cates that the model has adequately captured the correlation 
in the time series. 

The 24 months data for the year 2018-2019 were used 
for the validation of forecasted results. The obtained fore-
casts for the next 48 months (2020-2023) are also excellent 
compared to actual observations other than those used in the 
model, retaining the same trend. The forecasted results were 
(48 months in the year 2020-2023) validated with measured 

observation (2018-2019, 24 data points) showing an agree-
able association, as depicted in Fig. 6. 

In Fig. 6, the year 2020 measure and simulated observa-
tions were also compared to know the difference between 
the pandemic year pollutants concentration and the regular 
data-based simulated value. The year 2020 has different 
trends of pollutants due to pandemic conditions. It is iden-
tified that there is a significant difference in magnitude of 
the pollutants, but the variable behavior remains the same 



1045TIME SERIES SIMULATION AND FORECASTING OF AIR QUALITY OVER AN URBAN REGION

Nature Environment and Pollution Technology • Vol. 21, No. 3, 2022

Table 4: Model Fit Statistics.

Variables Stationary R-squared R-squared RMSE MAPE MAE t-value p-value

PM2.5 0.752 0.648 32.084 26.522 22.961 1.321 0.1025

NO2 0.585 0.383 17.672 41.479 12.253 4.813 0.0000

O3 0.700 0.537 16.246 23.850 12.065 4.709 0.0001

AOD550 0.744 0.824 0.105 9.236 0.073 1.290 0.1076

 

Fig. 5: Residuals of ACF and PACF for the selected modelsofPM2.5, NO2, O3, and MODIS 

AOD550. 
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Fig. 5: Residuals of ACF and PACF for the selected modelsofPM2.5, NO2, O3, and MODIS AOD550.
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in the case of PM2.5 and AOD whereas, O3 and NO2 have 
slightly different trends in contrast to a regular pattern. Based 
on the collective assessment of the model output, ARIMA 
simulation and forecasting results were found consistent. 
However, unpredictable meteorology and heterogeneity in 
the aerosol optical properties bring limitations in the model’s 
output, for example, moderate to low performance of ozone 
concentrations might be due to these limitations (as observed 
in Fig. 6 for ozone concentration). 

CONCLUSION

The data statics demonstrated the non-symmetrical data and 
leptokurtic distribution of pollutants PM2.5, O3, NO2, and 
AOD from 2012 to 2017. The pre-lockdown and lockdown 
comparative analysis demonstrate that in the year 2020, ex-
cept for AOD, pollutants concentration decreased to half in 
magnitude compared to the past nine years’ concentration. 

The simulated and forecasted result shows good agreement 
with the observed and validation data. Different model fit 
statics, and the five accuracy measures criteria also demon-
strated the harmony of results. In the context of air quality 
management, the ARIMA-based prediction demonstrates 
better suitability for the MODIS AOD, PM2.5, and NO2 
as compared to the O3 at an urban location in New Delhi. 
ARIMA approach, in combination with satellite data, can 
be a good option to forecast future aerosol load for areas 
where the ground data is a major limitation for the research.
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Fig. 6: Validation of modeled PM2.5, NO2, O3, and MODIS AOD550 with observed PM2.5, NO2, 

O3, and MODIS AOD550. 
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simulated value. The year 2020 has different trends of pollutants due to pandemic conditions. 

It is identified that there is a significant difference in magnitude of the pollutants, but the 
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slightly different trends in contrast to a regular pattern. Based on the collective assessment of 

the model output, ARIMA simulation and forecasting results were found consistent. However, 

unpredictable meteorology and heterogeneity in the aerosol optical properties bring limitations 

in the model's output, for example, moderate to low performance of ozone concentrations might 

be due to these limitations (as observed in Fig. 6 for ozone concentration).  

CONCLUSION 

Fig. 6: Validation of modeled PM2.5, NO2, O3, and MODIS AOD550 with observed PM2.5, NO2, O3, and MODIS AOD550.
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