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	        ABSTRACT
Accurately classifying land use and land cover (LULC) is crucial for understanding Earth’s 
dynamics under human influence. This study proposes a novel approach to assess LULC 
classification accuracy using Sentinel-2 data. Authors have compared traditional and Principal 
Component Analysis (PCA)-based approaches for Maximum Likelihood Classification, 
Random Forest, and Support Vector Machine (SVM) classifiers. Four key classes (agricultural 
land, water bodies, built-up areas, and wastelands) are classified using supervised learning. 
Accuracy is evaluated using producer, user, overall accuracy, and kappa coefficient. Our 
findings reveal superior accuracy with PCA-SVM compared to other methods. PCA effectively 
reduces data redundancy, extracting essential spectral information. This study highlights the 
value of combining PCA with SVM for LULC classification, empowering policymakers with 
enhanced decision-making tools and fostering informed policy development.

INTRODUCTION

The alteration of land use and land cover (LULC) has emerged as a pivotal 
element in contemporary approaches to the stewardship of natural resources 
and the surveillance of environmental transformations. The terms ‘Land Use’ 
and ‘Land Cover,’ initially identified as distinct, have been observed to be used 
interchangeably across diverse literature (Shrestha et al. 2021). Remote sensing 
data obtained from satellites are widely employed in the delineation of the Earth’s 
LULC. The global repercussions of changes in LULC are evident, particularly in 
the contrasting impacts on urban and rural regions. Mapping LULC stands out as 
a crucial application of remote sensing (Lakhera & Rahi 2021, Tiwari et al. 2024). 
Land cover serves as a foundational factor influencing and connecting various 
aspects of both the human and physical environment. It is widely acknowledged 
that alterations in land cover have substantial implications for essential processes, 
such as biogeochemical cycling, consequently affecting global warming, soil 
erosion, and sustainable land use. Over the next century, land cover is anticipated 
to be the foremost influential variable impacting biodiversity (Cheruto et al. 2016). 
Remote sensing technologies offer a unique advantage in this context, allowing 
for repetitive, long-term observations of the same geographic regions. The ability 
to monitor changes over time provides critical insights into the dynamics of land 
cover transitions, enabling more accurate predictions of future environmental shifts. 
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Platforms like Google Earth and the Earth Observation (EO) 
satellites have revolutionized the way researchers access 
and analyze spatial data, making it easier to conduct LULC 
assessments even in remote or poorly monitored regions. 
This is particularly vital for developing countries, where 
other forms of high-resolution data might be unavailable 
due to resource constraints.

Remote sensing fills this gap, providing comprehensive 
data that can be used for effective land management, urban 
planning, and environmental conservation (Tilahun & 
Teferie et al. 2015, Fakeye et al. 2015). Moreover, the rapid 
development of machine learning (ML) (Loukika et al. 2021) 
and Deep Learning (DL) techniques has transformed LULC 
classification. Traditionally, methods like the Bayesian 
Maximum Likelihood classifier were used, but recent 
advancements in ML have led to the development of more 
efficient and accurate classification algorithms. Support 
Vector Machines (SVM), Random Forest (RF), K-nearest 
neighbors (KNN), and more recently, deep learning models 
have enabled researchers to analyze LULC data with 
unprecedented accuracy (Asif et al. 2023, Avcı et al. 2023). 
These techniques are particularly beneficial in handling the 
vast amounts of complex data generated by hyperspectral 
imagery (HSI), which contains hundreds of spectral bands for 
each pixel. Hyperspectral data provide detailed information 
about the composition of land surfaces, making them ideal for 
fine-scale LULC classification. However, this data richness 
also presents challenges, such as the high dimensionality and 
computational demands of processing HSI.

Deep learning models, including Convolutional Neural 
Networks (CNNs), have proven particularly adept at 
handling hyperspectral data, outperforming traditional 
methods by capturing intricate spatial and spectral features 
that other algorithms may miss. The ability of these 
models to automatically learn feature representations from 
raw data has significantly improved the performance of 
LULC classification, leading to more accurate and reliable 
maps (Tao et al. 2023). This is especially important in 
heterogeneous landscapes—areas where diverse land use 
patterns, such as mixed urban and agricultural zones, create 
complex decision boundaries that can be challenging for 
conventional methods to classify correctly.

Predictive Modeling Approaches

Machine learning classifiers are noted for achieving increased 
accuracy, even when dealing with intricate data and a higher 
number of input features (Parracciani et al. 2024, Huang et 
al. 2011). Some well-known classifiers include Artificial 
Neural Networks (ANN), CART, k-nearest Neighbor (k-
NN), RF, and SVM (Jayabaskaran & Das 2023). While 

certain classifiers, like ANN, adhere to a neural network 
structure with multiple layers of nodes that exchange input 
observations iteratively throughout the learning process 
(specifically, the Multi-Layer Perceptron), reaching a 
termination condition, CART constructs a straightforward 
decision tree based on the provided training data (Sun et al. 
2024). RF, on the other hand, employs random subsets of 
training data to create numerous decision trees (Chowdhury 
2024). Other classifiers, such as k-NN, utilize information 
about neighboring pixels to discern the inherent patterns 
within the training dataset (Van Groenigen & Stein 1998). 
In contrast, classifiers like SVM identify a subset of training 
data known as support vectors by fitting a hyperplane that 
optimally separates two classes. Across various literature, 
it is widely suggested that in most classification scenarios, 
RF and SVM stand out as superior performers compared to 
other machine classifiers (Huang et al. 2002, Mountrakis et 
al. 2011, Pal & Foody 2012, Belgiu & Dragut 2016).

Random Forest tree employs a bagging technique, 
randomly selecting a subset of training samples with 
replacements to build individual trees. This can lead 
to overlapping samples and some being excluded from 
certain trees (Kunapuli 2023, Siqueira et al. 2024). The 
unused samples (out-of-bag samples) are utilized for 
unbiased performance evaluation, providing an estimate of 
generalization error (Blain n.d). Additionally, at each node, 
Random Forest randomly selects variables to determine 
the best split, reducing the correlation between trees and 
lowering generalization error. The choice of pruning methods 
typically affects tree-based classifiers, but Random Forest 
is resilient to such influences, as it constructs trees without 
the need for pruning techniques (Breiman et al. 2001, 2004).

The Maximum Likelihood Classification (MLC) assumes 
a normal distribution of statistics for each class in every band. 
It computes the likelihood that a particular pixel belongs to 
a specific class. Unless a probability threshold is chosen, 
all pixels receive classification. Each pixel is allocated to 
the class with the highest probability, i.e., the maximum 
likelihood. If the maximum probability is below a specified 
threshold, the pixel remains unclassified (Richards et al. 
2013).

Support vector machine (SVM) is a supervised machine 
learning method that is often used in LULC classification 
(Halder et al. 2023). SVM demonstrates effective accuracy 
in LULC applications, creating a hyperplane in high-
resolution satellite imagery. Notably, it excels in classifying 
images with a constrained set of training samples. SVM is 
regarded as more sophisticated than maximum likelihood 
classification (MLC) and is capable of achieving superior 
LULC classification compared to other classifiers, especially 
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when dealing with a limited number of pixels (Fetene et al. 
2023). SVM aims to discover the optimal hyperplane that 
maximizes the margin between different classes of data 
points. 

Principal component analysis (PCA) utilizing satellite 
imagery has been widely employed across various domains, 
notably in the detection of changes in land use and land 
cover (Moharram & Sundaram 2023). Over the years, it 
has gained considerable popularity due to its simplicity 
and effectiveness in amplifying change-related information 
(Schirpke et al. 2023). PCA, rooted in eigenvector analysis 
of the data correlation matrix, aims to capture maximum 
variances within a limited number of orthogonal components 
(Mahmud & Hafsa 2016, Shekar & Mathew 2022).

The fundamental concept of PCA involves the reduction 
of dimensionality in a dataset comprising numerous 
interrelated variables. This reduction is typically achieved by 
transforming the dataset into a new set of variables known as 
principal components (PCs). These PCs are both uncorrelated 
and ordered. When applied to data from multiple spectral 
bands, PCA tends to concentrate the majority of information 
in the initial two or three PCs, while the subsequent PCs 
generally contain noise (Somayajula et al. 2021, Shekar et 
al. 2023).

This study makes a unique contribution to the existing 
literature by conducting a direct comparative analysis 
between a conventional method utilizing Sentinel-2 original 

bands and a PCA-based approach for land use and land cover 
(LULC) classification. While much of the previous work has 
focused on evaluating classification algorithms in isolation 
or utilizing only traditional methods, this study evaluates 
the same classifiers (Maximum Likelihood Classification, 
Random Forest, and Support Vector Machine) across two 
distinct dimensionality reduction approaches. By doing 
so, the study sheds light on how PCA, a commonly used 
dimensionality reduction technique, impacts the performance 
of LULC classification algorithms in real-world applications.

The comparison of PCA and conventional methods is 
impactful because it addresses a key challenge in remote 
sensing—the curse of dimensionality—especially when 
handling multi-spectral data. Reducing dimensionality can 
lead to more efficient classification while maintaining or 
even improving accuracy. This study provides new insights 
into how PCA, when combined with machine learning 
classifiers like SVM, can outperform traditional classification 
approaches. This adds to the current understanding of LULC 
classification by highlighting the effectiveness of PCA-
SVM, particularly in improving classification accuracy and 
computational efficiency. 

Study Area

This study delves into the Panam watershed, a left-bank 
tributary of the Mahi River basin nestled within Gujarat’s 
Mahisagar district. The Panam River originates near Bhadra 
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positions the Panam watershed as an ideal canvas for our research endeavors. Fig. 1 provides 

a visual representation of the study area's location. 

 

Fig. 1: The study area of the Panam River watershed. 

MATERIALS AND METHODS 

This research investigates LULC in the Panam River watershed using freely available Sentinel-

2 satellite imagery from January 2024, acquired from the Copernicus Open Access Hub with 

minimal cloud cover. QGIS, free and open-source GIS software, was employed for data 

visualization, editing, and analysis. The study focused on 12 Sentinel-2 bands (bands 2 to 12) 

that were mosaicked and clipped to the specific watershed area. Details regarding the utilized 

Sentinel-2 multi-spectral instrument (MSI) Level 1C bands are provided in Table 1. 

 

 

 

Fig. 1: The study area of the Panam River watershed.



4 A. V. Memon et al.

Vol. 24, No. 2, 2025 • Nature Environment and Pollution Technology  

in Madhya Pradesh’s Jhabua district, traversing northwest 
for roughly 125 kilometers before merging with the Mahi 
in the Panchmahals district of Gujarat state. Encompassing 
a drainage area of 2400 square kilometers, the region 
experiences a tropical climate with temperatures fluctuating 
between 15°C in January and 40°C in May. Rainfall averages 
945 mm annually, shaping the watershed’s characteristics. 
This unique confluence of geographical and climatic factors 
positions the Panam watershed as an ideal canvas for our 
research endeavors. Fig. 1 provides a visual representation 
of the study area’s location.

MATERIALS AND METHODS

This research investigates LULC in the Panam River 
watershed using freely available Sentinel-2 satellite imagery 
from January 2024, acquired from the Copernicus Open 
Access Hub with minimal cloud cover. QGIS, free and open-
source GIS software, was employed for data visualization, 
editing, and analysis. The study focused on 12 Sentinel-2 
bands (bands 2 to 12) that were mosaicked and clipped to 
the specific watershed area. Details regarding the utilized 
Sentinel-2 multi-spectral instrument (MSI) Level 1C bands 
are provided in Table 1.

As shown in Fig. 2, the methodology commences by 
importing Sentinel-2-MSI L1 C imagery into the QGIS 
software, followed by the creation of a seamless image 
of the study area through mosaicking. A band composite 
image is then generated using all bands. To streamline data 
and identify crucial bands for classification, a Principal 
Component Analysis (PCA) is performed on the band 
composite image. After data preprocessing, the subsequent 
step involves collecting training samples for each land use 
class to be classified. High-resolution Google Earth images 

were employed to extract training samples for each LULC 
class. These images, with their fine spatial detail, allowed for 
accurate identification of homogeneous areas corresponding 
to Agricultural land, Water bodies, Built-up areas, and Barren 
land. Each sample class was carefully delineated through 
visual interpretation, ensuring that only representative and 
pure pixels were included.

The size of each sample class was determined based 
on the area and spatial distribution of the LULC classes, 
ensuring sufficient representation across the study area. For 
instance, larger classes like Agricultural land had a higher 
number of sample pixels compared to smaller classes like 
Water bodies. On average, around 200–300 pixels were 
collected per class to train the classifiers. Validation of 
the sample set was achieved through a stratified random 
sampling technique, where ground-truth points were cross-
referenced with both high-resolution imagery and field data 
(where available). This process ensured that the samples 
represented the true variability within each LULC class, 
leading to robust training datasets for model development.

The classification stage employs three distinct machine 
learning classifiers: maximum likelihood classifier, random 
forest tree classifier, and support vector machine classifier. 
Each classifier undergoes training using the previously 
collected training samples, distinguishing among the 
specified land use classes. Various accuracy metrics, 
including user’s accuracy (UA), producer’s accuracy 
(PA), overall accuracy (OA), and Kappa’s coefficient 
(k), are calculated for each classifier within the context of 
the designated land use classes. The kappa coefficient is 
calculated using the following equation.

	 𝑘𝑘 = (𝑃𝑃𝑜𝑜 − 𝑃𝑃𝑒𝑒) (1 − 𝑃𝑃𝑒𝑒)⁄  	 …(1)

where k is the kappa coefficient (ranges from 0 to 1), 
P

o
 is the observed agreement probability (sum of diagonal 

elements of confusion matrix divided by the total number 
of pairs, P

e
 is the expected agreement probability (sum of 

products of individual agreement probabilities for each 
category).

A kappa value of 0 indicates absolutely no agreement 
between raters beyond what could be expected by chance 
alone. Essentially, their ratings are no better than random 
guessing. If the kappa falls between 0.01 and 0.20, there’s 
some slight agreement, meaning the raters are occasionally 
aligned but more often differ. Moving to the 0.21-0.40 
range suggests fair agreement. While not perfect, the 
raters demonstrate some consistency in their assessments. 
A kappa value between 0.41 and 0.60 signifies moderate 
agreement, indicating the raters are often in agreement, 
though occasional discrepancies still exist. Substantial 
agreement is achieved with a kappa of 0.61 to 0.80. Here, 

Table 1: Sentinel-2 MSI Level1 C bands and their bandwidth.

Band
No.

Band Name Central Wavelength
(nm)

Bandwidth
(nm)

2 Blue 496.6 98.0

3 Green 560.0 45.0

4 Red 664.5 38.0

5 Vegetation Red Edge 705.0 19.0

6 Vegetation Red Edge 740.0 18.0

7 Vegetation Red Edge 783.0 28.0

8 Near Infrared 835.1 145.0

8A Narrow NIR 865.0 33.0

9 Water vapour 945.0 26.0

10 SWIR-Cirrus 1380.0 75.0

11 SWIR 1610.0 143.0

12 SWIR 2190.0 2420
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the raters demonstrate a strong level of consistency in their 
evaluations. Finally, a kappa value between 0.81 and 1.00 
represents almost perfect agreement. In this case, the raters 
are nearly always in sync, providing highly reliable and 
consistent assessments.

RESULTS AND DISCUSSION

Principal Component Analysis of all Bands 

Principal component analysis (PCA) was employed to 
compress the Sentinel-2 multispectral data. This technique 
aims to statistically capture the most significant evidence 
from the original bands (bands 2-12) into a reduced set 
of uncorrelated components termed principal components 
(PCs). The first few PCs inherently capture the majority 
of the data’s variability (Rana et al. 2020). Notably, the 
1st principal component (PC1), resulting from the 1st 
eigenvector, captured the greatest portion of the overall 
alteration within the Sentinel-2 dataset. Furthermore, the first 
three PCs collectively explained 98.85% of the eigenvalues, 
highlighting their effectiveness in representing the data. The 
remaining PCs displayed a decreasing trend in explained 
variance, corresponding to their respective eigenvalues. 

Tables 2 and 3 give the redundancy of information among 
several bands, indicating that if this redundancy can be 
reduced through techniques like PCA, then the amount of 
information can be compressed without significant loss of 
valuable data. The author concentrated on the crucial data 
and excluded the later components (bands 4 to 12) because 
they appeared noisy and lacked useful information. Table 4 
presents the eigenvalues and their corresponding cumulative 
percentage for principal components derived from Sentinel-2 
bands. PCA reduced the associated Sentinel-2 dataset to a 
significantly smaller set of non-related variables that retain 
most of the original dataset’s information. Fig. 3(a‒c) displays 
the PCA bands obtained from the Sentinel-2 information, 
while Fig. 3(d‒f) illustrates the frequency supply of these PC 
bands. The highest variance is found in the 1st PC, followed 
by the 2nd and 3rd components, according to the frequency 
distribution. The considered variances for PCA bands 1, 2, 
and 3 are 515,498.4, 263,079.1, and 8,843.772, respectively. 
Because of its high variance, the image produced from PCA 
band 1 data resembles the original image and contains the 
majority of the pertinent scene information. In multispectral 
remote sensing imagery, adjacent bands are often highly 
correlated and tend to provide similar information about an 
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Table 2: The covariance matrix for Sentinel-2 Bands.

Covariance Matrix

Bands 2 3 4 5 6 7 8 8A 9 10 11 12

2 2534 3142 6366 5086 1155 74 246 -2 14 13356 12664 278

3 3142 4302 8274 7382 4774 4420 4968 787 19 19648 17347 5308

4 6366 8274 19571 16612 3777 130 1069 1127 58 48332 43630 2041

5 5086 7382 16612 17449 13716 13701 15026 3646 67 52130 42330 17894

6 1155 4774 3777 13716 60727 82391 82966 13782 53 45670 21589 93635

7 74 4420 130 13701 82391 114641 114838 18556 50 48490 17398 129299

8 246 4968 1069 15026 82966 114838 120480 18465 55 53913 21237 130521

8A -2 787 1127 3646 13782 18556 18465 4161 17 13710 7207 21660

9 14 19 58 67 53 50 55 17 2 225 159 72

10 13356 19648 48332 52130 45670 48490 53913 13710 225 182512 143458 65389

11 12664 17347 43630 42330 21589 17398 21237 7207 159 143458 122336 27102

12 278 5308 2041 17894 93635 129299 130521 21660 72 65389 27102 147830

Table 3: Correlation matrix for Sentinel-2 Bands.

Correlation matrix

Bands 2 3 4 5 6 7 8 8A 9 10 11 12

2 1.00 0.95 0.90 0.76 0.09 0.00 0.01 0.00 0.21 0.62 0.72 0.01

3 0.95 1.00 0.90 0.85 0.30 0.20 0.22 0.19 0.22 0.70 0.76 0.21

4 0.90 0.90 1.00 0.90 0.11 0.00 0.02 0.12 0.31 0.81 0.89 0.04

5 0.76 0.85 0.90 1.00 0.42 0.31 0.33 0.43 0.38 0.92 0.92 0.35

6 0.09 0.30 0.11 0.42 1.00 0.99 0.97 0.87 0.16 0.43 0.25 0.99

7 0.00 0.20 0.00 0.31 0.99 1.00 0.98 0.85 0.11 0.34 0.15 0.99

8 0.01 0.22 0.02 0.33 0.97 0.98 1.00 0.82 0.12 0.36 0.17 0.98

8A 0.00 0.19 0.12 0.43 0.87 0.85 0.82 1.00 0.19 0.50 0.32 0.87

9 0.21 0.22 0.31 0.38 0.16 0.11 0.12 0.19 1.00 0.39 0.34 0.14

10 0.62 0.70 0.81 0.92 0.43 0.34 0.36 0.50 0.39 1.00 0.96 0.40

11 0.72 0.76 0.89 0.92 0.25 0.15 0.17 0.32 0.34 0.96 1.00 0.20

12 0.01 0.21 0.04 0.35 0.99 0.99 0.98 0.87 0.14 0.40 0.20 1.00

Table 4: Total variance explained for Sentinel-2 Bands.

Percent and Accumulative Eigenvalues

PC Layer Eigen Value % of Eigen Values Accumulative of 
Eigen Values

1 515498.4 64.7168 64.7168

2 263079.1 33.0275 97.7444

3 8843.772 1.1103 98.8547

4 3807.653 0.478 99.3327

5 2426.928 0.3047 99.6374

6 1031.848 0.1295 99.7669

7 770.6416 0.0967 99.8636

8 462.6402 0.0581 99.9217

9 324.2669 0.0407 99.9624

10 230.819 0.029 99.9914

11 67.13062 0.0084 99.9998

12 1.29266 0.0002 100

object. The correlation between PCs 1 and 3, 1 and 2, and 2 
and 3 was all found to be precisely zero. The random scatter 
observed in Fig. 4(a‒c) and minimal correlation values 
indicate a complete absence of a relationship between the 
PCs. Consequently, classification tasks can often benefit 
from using the first few PCs instead of the entire original 
dataset. In our study, visual inspection revealed that PCA 
band 1 generally exhibited brighter pixel values and higher 
contrast compared to PCA band 2. This suggests that PCA 
band 1 may capture information related to high-variance 
features in the data, potentially making it more suitable for 
specific classification tasks depending on the target features 
of interest.

LULC classes were chosen based on a thorough 
understanding of the specific study area. The study 
identified four primary LULC classes: Agricultural land 
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plains and rocky outcrops reign supreme, their surfaces a tapestry of exposed dirt, sand, and 

stone). Classification was carried out using two approaches: the conventional method using 

Sentinel-2 original bands, as shown in Fig. 5(a), and a PCA-based approach, as shown in Fig. 

5(b).  
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Support vector machine with PCA. 
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(Agricultural zones, forest, etc.), water bodies (Reservoirs, 
rivers, streams, swamps, lakes), built-up areas (buildings 
and other manmade edifices, areas designated as mixed 
urban, industrial, or built territory), and barren land 
(Areas perpetually stripped bare, boasting less than 10% 
vegetation cover. Windswept plains and rocky outcrops reign 
supreme, their surfaces a tapestry of exposed dirt, sand, and 
stone). Classification was carried out using two approaches: 
the conventional method using Sentinel-2 original bands, as 
shown in Fig. 5(a), and a PCA-based approach, as shown in  
Fig. 5(b). 

The effectiveness of these two LULC classification 
approaches was evaluated by assessing the predictive 
performance of three classification algorithms, namely MLC, 
RF, and SVM, along with the training data. Training data 
for each LULC category was collected as a set of pixels, 
and test data was obtained using stratified random sampling. 
The LULC maps generated using various classifiers for both 
approaches are depicted in Fig. 6(a-f).

Performance Evaluation

The authors evaluated the efficiency of each model, RF, and 
SVM for both approaches by considering the user’s accuracy 
(UA) and producer’s accuracy (PA) for each LULC class. 
The results for each class were individually outlined as 
the models exhibited varying performance across different 
types. The specifics of UA and PA for each LULC class 
using MLC, RF, and SVM were thoroughly examined and  
described. 

UA and PA for Agricultural Land

The land cover classification results for Agricultural Land 
using the Sentinel-2 Conventional Approach and Sentinel-2 
PCA Approach with different classifiers reveal varying levels 
of accuracy. As shown in Table 5 under the Conventional 
Approach, both MLC and RF classifiers achieve high User’s 
accuracy (UA) for Agricultural Land, with MLC reaching 
100.00% UA and a corresponding Producer’s accuracy (PA) 
of 65.63%, while RF achieves a UA of 100.00% and a PA of 
62.50%. As shown in Table 6 in the PCA Approach, MLC 
shows a decrease in accuracy for Agricultural Land, with a 
UA of 80.95% and a lower PA of 39.29%. RF experiences 
a significant decline in both UA (62.79%) and PA (3.57%) 
for Agricultural Land, indicating diminished accuracy. SVM 
exhibits a perfect UA of 100.00% with a PA of 50.00% under 
the Conventional Approach, and in the PCA Approach, it 
maintains a relatively high UA of 82.61% with a lower PA 
of 32.14%. These results highlight the varied performance of 
classifiers in accurately classifying Agricultural Land under 
different approaches.

UA and PA for Built-Up Areas

In the land cover classification results for Built-up Areas 
using the Sentinel-2 Conventional Approach and Sentinel-2 
PCA Approach with different classifiers, there are notable 
differences in the accuracy metrics. As shown in Table 
5, under the conventional approach, maximum likelihood 
classification (MLC) achieves a user’s accuracy (UA) of 
80.95%, indicating reasonably accurate classification, with 
a high producer’s accuracy (PA) of 94.44%. Random Forest 
Tree performs exceptionally well, achieving a perfect UA 
of 100.00% and a high PA of 91.67%, showcasing precise 
classification for built-up areas. Support vector machine 
(SVM) exhibits a UA of 78.05% with a corresponding PA 
of 88.89%. As shown in Table 6, the PCA Approach, MLC 
maintains accuracy with a UA of 81.58% and a perfect 
PA of 100.00%. Random Forest Tree achieves a UA of 
83.78% and a perfect PA of 100.00%, indicating reliable 
classification. SVM also demonstrates consistent accuracy, 
with a UA of 83.78% and a perfect PA of 100.00%. These 
results highlight the varying performance of classifiers 
in accurately classifying Built-up Areas under different 
approaches, with each classifier showcasing strengths in 
specific accuracy metrics.

UA and PA for Water Bodies

In the land cover classification results for Water Bodies 
using the Sentinel-2 Conventional Approach and Sentinel-2 
PCA Approach with different classifiers, distinct patterns in 
classification accuracy emerge. As shown in Table 5 under 
the CA, MLC exhibits high accuracy, achieving a UA of 
96.43% and a PA of 79.41%. RFT, while displaying a lower 
UA of 82.93%, achieves a perfect PA of 100.00%, indicating 
precise classification for Water Bodies. SVM demonstrates a 
UA of 96.77% with a PA of 88.24%. As shown in Table 6, in 
the PCA Approach, all classifiers perform exceptionally well 
for water bodies. MLC achieves a perfect UA of 100.00% 
and a high PA of 92.11%. Random forest tree and SVM both 
achieve perfect UA and PA values of 100.00% and 97.37%, 
respectively, showcasing precise and consistent classification 
for Water Bodies.

UA and PA for Barren Land

In the land cover classification results for Barren Land 
using the Sentinel-2 CA and Sentinel-2 PCA approach 
with different classifiers, there are noticeable variations in 
classification accuracy. 

As shown in Table 5 under the CA, MLC achieves a 
UA of 70.67%, indicating moderate accuracy, with a high 
PA of 98.15%. RTF displays slightly higher UA at 71.83%, 
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with a PA of 94.44%. SVM performs well, achieving a UA 
of 73.97% and a perfect PA of 100.00%, indicating reliable 
classification for Barren Land.

As shown in Table 6 of the PCA Approach, MLC 
maintains reasonable accuracy with a UA of 73.47% 
and a PA of 78.26%. Random Forest Tree demonstrates 
significantly higher accuracy, with a UA of 96.15% and a 
PA of 54.35%, indicating precise classification for Barren 
Land. SVM shows consistent accuracy with a UA of 78.26% 
and a PA of 78.26%.

Overall Accuracy and Kappa’s Coefficient

In evaluating the land cover classification results using the 
Sentinel-2 Conventional Approach and Sentinel-2 PCA 
Approach with different classifiers, Overall Accuracy (OA) 

and Kappa coefficients provide insights into the performance 
of each approach. Under the Conventional Approach, 
MLC achieves an OA of 80.13% with a Kappa coefficient 
of 0.8013, indicating reasonably accurate classification. 
Random Forest Tree demonstrates higher accuracy, with 
an OA of 82.69 % and a Kappa coefficient of 0.8269. SVM 
maintains competitive accuracy with an OA of 81.41% and 
a Kappa coefficient of 0.8141.

In the PCA approach, MLC showcases improved 
accuracy with an OA of 83.22 % and a Kappa coefficient 
of 0.8322. Random Forest Tree maintains similar accuracy, 
achieving an OA of 83.92 % and a Kappa coefficient of 
0.8392. Notably, SVM excels with the highest accuracy, 
presenting an OA of 86.01% and a Kappa coefficient of 
0.8601.

Table 5: Accuracy of different Classifiers for LULC using conventional approach for Sentinel-2 data set.

Sr. No Conventional approach

Classifiers Classes UA PA OA Kappa

1. Maximum Likelihood Classification Agricultural Land 100.00% 65.63% 80.13% 0.8013

Built up Area 80.95% 94.44%

Water bodies 96.43% 79.41%

Barren Land 70.67% 98.15%

2. Random Forest Tree Agricultural Land 100.00% 62.50% 82.69% 0.8269

Built up Area 100.00% 91.67%

Water bodies 82.93% 100.00%

Barren Land 71.83% 94.44%

3. Support Vector Machine Agricultural Land 100.00% 50.00% 81.41% 0.8141

Built up Area 78.05% 88.89%

Water bodies 96.77% 88.24%

Barren Land 73.97% 100.00%

Table 6: Accuracy of different classifiers for LULC using PCA approach for Sentinel-2 dataset.

Sr. No PCA approach

Classifiers Classes UA PA OA Kappa

1. Maximum Likelihood Classification
Built up Area
Water bodies
Barren Land

Agricultural Land 80.95% 39.29% 83.22% 0.8322

81.58% 100.00%

100.00% 92.11%

73.47% 78.26%

2. Random Forest Tree
Built up Area
Water bodies
Barren Land

Agricultural Land 62.79% 3.57% 83.92% 0.8392

83.78% 100.00%

100.00% 97.37%

96.15% 54.35%

3. Support Vector Machine
Built up Area
Water bodies
Barren Land

Agricultural Land 82.61% 32.14% 86.01% 0.8601

83.78% 100.00%

100.00% 97.37%

78.26% 78.26%
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The practical advantages of using the PCA-SVM 
method for land use and land cover (LULC) classification 
are substantial, particularly in addressing issues like high 
dimensionality and data complexity. By reducing the number 
of input features, PCA captures the most important variance 
in the data, thereby improving computational efficiency 
and reducing the risk of overfitting. This makes PCA-
SVM particularly useful in cases where the training data is 
limited, as SVM’s strong generalization capability allows it 
to perform well even with fewer samples. Moreover, PCA-
SVM proves highly effective in heterogeneous landscapes, 
where complex land use patterns (e.g., urban and agricultural 
mixes) require sophisticated classification models that can 
handle intricate decision boundaries. As demonstrated in 
the study, PCA-SVM achieved the highest OA and Kappa 
coefficients, making it a superior approach for LULC 
classification, especially in regions with limited training 
samples and diverse landscape features.

CONCLUSIONS

In conclusion, this study undertook land use and land cover 
classification in the study area, delineating four primary 
classes: Agricultural land, water bodies, built-up areas, 
and barren land. The predictive performance of three 
classification algorithms (MLE, RF, and SVM) was evaluated 
using both traditional and PCA-based approaches using the 
original bands of Sentinel-2. The results demonstrated 
varying accuracies across land cover classes and classifiers. 
Particularly noteworthy was the Sentinel-2 PCA Approach, 
notably with the Support Vector Machine classifier, which 
exhibited superior accuracy for Agricultural Land (UA: 
82.61%, PA: 32.14%), Built-up Area (UA: 83.78%, PA: 
100.00%), Water Bodies (UA: 100.00%, PA: 97.37%), and 
Barren Land (UA: 78.26%, PA: 78.26%) compared to the 
Conventional Approach.

The detailed assessment of User’s Accuracy (UA), 
Producer’s Accuracy (PA), Overall Accuracy (OA), and 
Kappa coefficients provided comprehensive insights into the 
strengths and weaknesses of each approach and classifier. 
With an Overall Accuracy of 86.01% and a Kappa coefficient 
of 0.8601, the Sentinel-2 PCA Approach with the SVM 
classifier emerged as the most effective approach for accurate 
land cover classification in this study. These findings 
underscore the potential applicability of this approach 
for land use and land cover mapping and monitoring 
throughout similar regions, demonstrating its utility for 
broader applications in land cover studies. The integration 
of Sentinel-2 data with advanced classification methods can 
contribute significantly to more accurate and efficient land 
cover assessments in diverse geographical areas.
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