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       ABSTRACT
The occurrence of heavy metals in soil and selected edible plants (Manihot esculenta, 
Dioscorea rotundata, Ipomoea batatas, Telfairia occidentalis, and Chromolaena  odorata) 
in the vicinity of major Lead-Zinc mining sites in Ebonyi State, Nigeria was investigated. 
The concentrations of the detected heavy metals in soil from the study sites ranged from 
0.38-77830.99 (mg.kg-1). The limit values for all detected metals in soil from the mining sites 
were exceeded in most instances. The results showed that the plant species accumulated 
heavy metals near the mining sites to varying levels in their shoots and roots. The limit 
values for all detected heavy metals in the edible plants were not exceeded except in a 
few instances. The plant species demonstrated varying effectiveness for phytoextraction, 
indicating their appropriateness in the phytoremediation of heavy metal-contaminated soil. 
Therefore, examining the environmental consequences of uncontrolled mining activity in the 
vicinity of the mining sites with a scientific approach has helped to increase our knowledge 
of the pollution problem in the mining sites, reveal the ferocity of the situation, and contribute 
to the techniques presently in use for monitoring chemical pollution in a mining-impacted 
ecosystem.

INTRODUCTION

Mining is an important economic activity that plays an 
indispensable role in the evolution and growth of a nation 
(Mohsin et al. 2021). Uncontrolled mining methods are 
often employed in most developing nations, such as Nigeria 
(Elom et al. 2018). When not adequately controlled, mining 
activities could lead to environmental pollution and social 
problems (Rajasekaran 2007, Štofejová et al. 2021). 
Environmental pollution by heavy metals from mining 
activities could negatively affect the health of the local 
residents and biota (Rajasekaran 2007, Roba et al. 2016, 
Nawab et al. 2016, Wang et al. 2017, Nuapia et al. 2018). The 
occurrence of toxic metals such as lead (Pb), cadmium (Cd), 
arsenic (As), and chromium (VI) (Cr+6), among others, in the 
vicinity of mining sites could constitute serious health risks 
to the ecosystem (Sharma & Dubey, 2005, Lamare & Singh 
2017). Heavy metals are toxic chemicals that could create 

scores of upset in a plant due to their bioaccumulation in plant 
tissues and concomitant interference with several metabolic 
processes (Mahdavian & Somashekar 2009, Gomes et al. 
2014). As most heavy metals are not essential elements, most 
plants lack mechanisms for their uptake. Therefore, these 
metals bind to specific functional groups (carboxylic groups) 
of plant secretion (mucilage uronic acids) on root surfaces 
(Sharma & Dubey 2005). However, it is still unknown how 
these metals, especially Pb, are absorbed into the root tissue. 

Although some plants tolerate toxic metals through 
specific chemical interactions, other species could experience 
toxicity, as toxic metals could hamper several plant metabolic 
pathways (Wierzbicka 1999). In a few plant species, higher 
levels of toxic metals such as Pb inhibit the germination of 
seeds, growth of plants, and synthesis of chlorophyll, among 
other effects (Peralta-Videa et al. 2009). Generally, heavy 
metals reduce the uptake and transport of vital nutrients in 
plants by obstructing the attachment of ions to ion carriers, 
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making them inaccessible from plant roots (Xiong 1997). 
Heavy metals could form strong bonds in interaction with 
active chemical groups and adversely affect metabolism 
in plants (Taub 2004). Under normal circumstances, these 
bonds should produce vital linkages that maintain molecules 
in their true configuration.

Mining and industrial processing of natural resources 
remain a primary source of the increased toxic metals in the 
environment (Davis 1995, Rajasekaran 2007, Sherene 2009). 
Lead-Zinc (Pb-Zn) mining in Ebonyi State dates back to 1925 
(Chrysanthus 1995) and has progressed enormously in an 
unregulated manner (Elom et al. 2018). In Nigeria, Lead-zinc 
mining is not strictly monitored (Elom et al. 2018) and hence 
could serve as a great source of metal contamination in the 
vicinity of the mining sites (Abrahams 2002). Toxic metals 
are usually released into the surrounding environment during 
mining activities (Roba et al. 2016, Nawab et al. 2016, Wang 
et al. 2017, Nuapia et al. 2018, Štofejová et al. 2021), and 
this could pose a serious threat to various life forms in the 
mining zones (Soucek et al. 2000). The occurrence of toxic 
metals in the environment portends significant health risks 
to the ecosystem and public health (Elom et al. 2018, Eze 
et al. 2019, 2020). In developing nations, little attention is 
often paid to the environmental consequences of unregulated 
mining (Mohsin et al. 2021). Reports of heavy metal levels in 
soil from the vicinity of major Pb-Zn mining sites in Ebonyi 
State exceed soil guideline values (SGVs) (Elom et al. 2018, 
Okeke & Ifemeje 2021). Since farming is a major source 
of income in the area, the quality of farm produce, such as 
edible plants near the mining sites, is likely to be affected. 
Therefore, the occurrence of heavy metals in soil and selected 
edible plant species (Manihot esculenta (Cassava), Dioscorea 

rotundata (White yam), Ipomoea batatas (Sweet potatoes), 
Telfairia occidentalis (Fluted pumpkin) and Chromolaena  

odorata (Siam weed)) in the vicinity of major lead-zinc 
mining sites in Ebonyi State, Nigeria was investigated. 
Determining the exposure pathway to toxic chemicals is 
vital in health risk assessment to properly establish adequate 
monitoring plans and risk management strategies (Bierkens 
et al. 2009).

MATERIALS AND METHODS

Study Area 

Ebonyi State is located on latitude 6° 15’ N and 6° 20’N and 
longitude 8° 05’ E and 8° 10’E, in the eastern part of Nigeria 
and shares a border with Benue State in the North, Cross 
River State by East, Enugu State by the West, and Abia, 
and Imo states by South (Odoh et al. 2012). The state has 13 
Local Government Areas and occupies a surface area of about 
(5,923 sq.km) representing 2% of Nigeria’s total surface Area 

(Odoh et al. 2012). It has a population of about 2,176,947 
million (NPC 2010). The lead-zinc mine communities in 
Ebonyi State are situated in three local government areas 
generally referred to as the Abakaliki lead-zinc mine area 
(Fig. 1). The Abakaliki lead-zinc area is primarily made up 
of three lodes: Enyigba, Ameri, and Ameka in the lower 
Benue trough located in Ebonyi State (Agumanu 1989). The 
Enyigba, Ameri, and Ameka communities are situated in the 
south of Abakaliki (Okeke & Ifemeje 2021) and are notable 
lead-zinc mining zones in Nigeria (Eze et al. 2021) that have 
experienced significant mining activities (Okeke & Ifemeje 
2021). The area experiences a warm, humid tropical climate. 
The relative humidity is high, usually over 90% in the early 
morning but falls between 6 and 80 % in the afternoon; it 
is highest between May and October and ranges between 
57.6 % in the dry season to 82.1% in the wet season. The 
temperature range is between 23°C and 26 °C for the dry 
season and 26°C and 28°C for the wet season. Rainfall in 
the area is heaviest during July and September and relatively 
low between November and March. About 80% of the total 
rainfall occurs between June and September, while only 
about 12% of the annual total fall between November and 
February (Odoh et al. 2012). The cultivated crops in the area 
include rice, cassava, leafy vegetables, and yam of different 
species (Okeke & Ifemeje 2021). The most prevalent tree 
species found in the study area are the agricultural tree crops, 
particularly oil palm, and kolanut. Many timber species of 
economic importance still exist in the area. The soil parent 
material is primarily shale and fine-grained sandstones of 
the Asu River formation (Agumanu 1989). The texture 
varied from loamy clay on the surface (0-15 cm) to clay at 
the subsurface layers (below 15 cm). The soil has a good 
potential to support tree crops and arable crops. However, 
there have been reports of heavy metal pollution resulting 
from uncontrolled mining activity (Eze et al. 2021). 

Sample Collection

Top (0-30cm) and sub (30-45 cm) soil samples were 
collected randomly from the vicinity of Enyigba, Ameri, 
and Ameka Pb-Zn mining sites. Control soil (top and sub) 
was also collected from a remote location with no lead-zinc 
mining activity (about 25km from the Abakaliki area) to 
serve as reference soil. The soil samples were collected 
during September 2021 using a soil auger, geo-referenced, 
homogenized accordingly to form representative soil from 
each site, and transported to the laboratory in a black 
polythene bag. Each representative soil was air dried, ground 
using mortar and pestle into powder, sieved using a 2mm 
mesh, and stored in polythene bags before analysis. A total 
of hundred (100) plant samples were used for this study. 
Five (5) of each of the plant samples (Manihot esculenta 
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(Cassava), Dioscorea rotundata (White yam), Ipomoea 

batatas (Sweet potatoes), Telfairia occidentalis (Fluted 
pumpkin), and Chromolaena odorata (Siam weed)) were 
randomly collected from the vicinity of the mining sites.

Furthermore, five (5) of each plant species were also 
collected from the control site to serve as reference plant 
species. The underground and aerial parts of the plant species 
were collected in September 2021, placed accordingly in a 
labeled polyethylene bag, and transported to the laboratory. 
The plant samples were cleaned of residual materials, dried, 
homogenized accordingly, and divided into parts (root and 
shoot) for metal analysis. All samples were collected, putting 
into consideration the pollution dynamics of the mining sites.

Heavy Metal and Physicochemical Analysis 

The representative soil, as well as root and shoot of the 
selected plant species, were analyzed for the presence and 
varying concentrations of lead (Pb), copper (Cu), zinc (Zn), 
cadmium (Cd), manganese (Mn), chromium (VI), iron (II) 
(Fe) and nickel (Ni) using the spectrometric method as 
described by Štofejová et al. (2021). The physicochemical 
analysis of soil was done using standard methods described 
by American Public Health Association (APHA) (2005). The 
obtained values were compared with data from a reference 
site and limit values for toxic metals as set by USEPA (1986). 
The quality control and assessment measures adopted in this 

investigation included field blanks, field duplicates, reference 
sites, lab replicates, and calibration blanks and standards.

Determination of Phytoextraction Quotient

The translocation factor (T/F), defined as the ratio of 
heavy metals in a plant’s shoot to that of the root ([metals]

Shoot/[metals]Root), was used in the determination of the 
phytoextraction quotient as described by Cui et al. (2007). 

Statistical Analysis

The data generated were presented as mean ± Standard 
deviation (SD) of three replicates. One-way Analysis of 
variance (One-way ANOVA) performed with SPSS version 
9.2 (Inc. Chicago, USA) was used to analyze data while 
significant differences were determined at P ≤ 0.05. 

RESULTS AND DISCUSSION 

The result of the soil physicochemical and heavy metal 
analyses is shown in Table 1 and 2 respectively, while the 
result of the occurrence of heavy metals in the shoot and root 
of the plant species (Manihot esculenta (Cassava), Dioscorea 

rotundata (White yam), Ipomoea batatas (Sweet potatoes), 
Telfairia occidentalis (Fluted pumpkin) and Chromolaena 

odorata (Siam weed)) from the vicinity of Ameka, Ameri, 
Enyigba and control sites are presented in Tables 3 to 6 
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 Fig.1: Map of Abakaliki lead-zinc mining zone showing sample locations. 
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respectively. The limit values for all detected metals in soil 
from the mining sites were exceeded in most instances. The 
obtained soil pH value ranged from 6.36 ± 0.07 - 6.81 ± 
0.05, EC ranged from 1.12 ± 1.05 - 4.87 ± 1.61 (mS.m-1), 
CEC ranged from 19.37 ± 0.74 - 59.12 ± 1.31 (Cmol.kg-

1), TOC ranged from 0.90 ± 0.50 - 2.35 ± 0.21 (%), TOM 
ranged from 1.55 ± 0.85 - 4.05 ± 0.72 (%), Clay ranged 
from 0.92 ± 0.31 - 8.44 ± 0.35 (%), Silt ranged from 0.28 ± 
0.40 - 4.20 ± 0.50 (%) and Sand (%) 87.36 ± 0.28 - 98.80 ± 
0.53 (%) (Table 1). The topsoil from the Ameka mining site 
showed the highest pH value, while sub soil from the Ameri 
mining site showed the lowest (Table 1). The highest level 
of EC, CEC, TOC, TOM, Clay, Silt, and Sand was detected 
in topsoil from Enyigba, subsoil from Ameri, topsoil from 
Ameri, topsoil from Ameri, subsoil from Ameka, subsoil 
from Ameka and subsoil from the control site respectively 
(Table 1). The concentrations of the detected heavy metals in 
soil from the study sites ranged from 0.38 ± 0.33 - 77830.99 ± 
5.12  (mg.kg-1), with Fe showing the highest concentration in 
topsoil from Ameri and Cd showing the lowest concentration 

in subsoil from the control site (Table 2). The determined 
physicochemical parameters and heavy metals in soil from the 
mining sites differ significantly (P ≤ 0.05) from the control 
site. The obtained soil pH values suggest that soil from the 
study sites is slightly acidic and might have influenced the 
distribution of heavy metals in soil in the vicinity of the 
study sites (Sherene 2009, Štofejová et al. 2021, Kashyap 
et al. 2016). 

The limit values for all detected metals in the shoots and 
roots of plants from the Ameka mining site were not exceeded 
except for Cd and Fe in the shoot of Telfairia occidentalis 
(Table 3). The highest average concentration of Pb (2.56 
mg.kg-1) in plants from Ameka mining site was detected 
in the root of Telfairia occidentalis, Zn (2.76 mg.kg-1) in 
the shoot of Chromolaena odorata, Fe (990.5 mg.kg-1) in 
the shoot of Telfairia occidentalis, Cu (1.05 mg.kg-1) and 
Cd (1.48 mg.kg-1) in the root of Telfairia occidentalis, Mn 
(0.31mg.kg-1) in the shoot of Chromolaena odorata, Ni 
(0.90 mg.kg-1) in the shoot of Dioscorea rotundata and Cr 
(0.99 mg.kg-1) in roots of Ipomoea batatas and Telfairia 

Table 1: Physicochemical parameters of soil from the study sites. 

Parameters AMEKA AMEKA AMERI AMERI ENYIGBA ENYIGBA CONTROL CONTROL

Topsoil Subsoil Topsoil Subsoil Topsoil Subsoil Topsoil Subsoil

pH 6.81 ± 0.05 6.47 ± 0.18 6.57 ± 0.03 6.36 ± 0.07 6.55 ± 0.15 6.41 ± 0.05 6.57 ± 0.05 6.74 ± 0.13

EC [mS.m-1] 1.17 ± 0.62 1.74 ± 0.65 3.95 ± 1.13 4.46 ± 0.33 4.87 ± 1.61 4.04 ± 1.19 1.12 ± 1.05 1.79 ± 0.73

CEC [Cmol.
kg-1]

40.55 ± 1.12 56.31 ± 0.63 53.58 ± 0.56 59.12 ± 1.31 53.92 ± 1.04 58.49 ± 0.27 20.42 ± 0.42 19.37 ± 0.74

TOC [%] 1.45 ± 0.37 1.02 ± 0.93 2.35 ± 0.21 1.54 ± 0.28 1.93 ± 0.34 0.90 ± 0.50 1.55 ± 0.25 1.47 ± 0.41

TOM [%] 2.50 ± 0.19 1.76 ± 0.11 4.05 ± 0.72 2.65 ± 0.36 3.33 ± 0.27 1.55 ± 0.85 2.67 ± 0.54 2.53 ± 0.15

Clay [%] 6.21 ± 0.27 8.44 ± 0.35 8.00 ± 0.40 7.96 ± 0.15 8.02 ± 0.26 7.57 ± 0.22 1.40 ± 0.14 0.92 ± 0.31

Silt [%] 2.26 ± 0.16 4.20 ± 0.50 2.49 ± 0.53 2.15 ± 0.15 2.67 ± 0.32 2.96 ± 0.23 0.35 ± 0.25 0.28 ± 0.40

Sand [%] 91.53 ± 0.87 87.36 ± 0.28 89.51 ± 0.45 89.89 ± 0.93 89.31 ± 0.29 89.47 ± 0.71 98.25 ± 0.47 98.80 ± 0.53

EC = Electrical conductivity, CEC = Cation exchange capacity, TOC = Total organic carbon, TOM = Total organic matter. 

Table 2: Heavy metal contents [mg.kg-1] of soil from the study sites.

Metals 
[mg.
kg-1]

USEPA 
[mg.kg-1]

AMEKA AMEKA AMERI AMERI ENYIGBA ENYIGBA CONTROL CONTROL

Topsoil Subsoil Topsoil Subsoil Topsoil Subsoil Topsoil Subsoil

Pb 300 1953.59 ± 1.78 1946.24 ± 0.83 154.88 ± 0.96 1154.05 ± 0.26 214.67 ± 1.12 212.33 ± 0.41 30.03 ± 0.34 29.95 ± 0.15

Zn 200 141.06 ± 2.38 1140.75 ± 0.52 1197.23 ± 0.74 1193.13 ± 1.11 1182.82 ± 1.05 1179.04 ± 0.63 8.88 ± 0.68 8.77 ± 0.45

Fe 1000 44595.70 ± 3.17 44619.28 ± 2.11 77830.99 ± 5.12 77545.80 ± 1.58 7903.73 ± 2.74 77525.58 ± 0.93 70.17 ± 0.17 70.12 ± 0.31

Cu 250 141.69 ± 0.32 139.53 ± 0.41 35.54 ± 0.18 33.99 ± 0.33 34.40 ± 0.56 29.83 ± 0.12 18.02 ± 0.35 12.65 ± 0.64

Cd 3.0 4.53 ± 0.44 3.46 ± 0.72 5.37 ± 0.55 5.04 ± 0.23 5.65 ± 22 4.67 ± 0.34 0.39 ± 0.31 0.38 ± 0.33

Mn 80 2211.0 9 ± 2.11 2283.70 ± 1.78 1238.11 ± 1.37 1238.28 ± 2.13 1219.21 ± 0.96 1224.15 ± 1.64 5.96 ± 0.52 6.91 ± 0.75

Ni 150 38.96 ± 0.33 38.75 ± 0.12 72.28 ± 0.24 72.17 ± 0.93 64.61 ± 0.19 61.76 ± 0.35 2.60 ± 0.51 2.50 ± 0.20

Co NA 55.81 ± 0.42 47.52 ± 0.30 33.07 ± 0.38 32.44 ± 0.45 56.22 ± 0.51 56.06 ± 0.36 0.8.03 ± 0.29 1.02 ± 0.81

Cr 750 1176.05 ± 0.40 1194.63 ± 0.73 1127.57 ± 0.47 1121.80 ± 0.85 196.70 ± 0.50 144.37 ± 0.23 1.40 ± 0.26 1.58 ± 0.33
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occidentalis (Table 3). The limit values for all detected 
metals in the shoots and roots of plants from the Ameri 
mining site were not exceeded except for Cd in the shoot 
of Manihot esculenta, the root of Dioscorea rotundata, and 

shoots and roots of Ipomoea batatas, Telfairia occidentalis, 

and Chromolaena odorata (Table 4). The highest average 
concentration of Pb (1.21 mg.kg-1) in plants from the Ameri 
mining site was detected in the shoot of Ipomoea batatas, 

Zn (2.05 mg.kg-1) in the root of Chromolaena odorata, Fe 
(118.75 mg.kg-1) in the root of Telfairia occidentalis, Cu 
(1.31 mg.kg-1) in the shoot of Ipomoea batatas, Cd (0.99 
mg.kg-1) and Mn (0.66 mg.kg-1) in the root and shoot of 
Telfairia occidentalis respectively and Ni (0.11 mg.kg-1) as 
well as Cr (0.82 mg.kg-1) in the shoot of Ipomoea batatas 
(Table 4). The limit values for all detected metals in the shoots 
and roots of plants from the Enyigba mining site were not 
exceeded except for Fe in the shoot of Telfairia occidentalis 

and Cd in the root of Dioscorea rotundata, shoots, and roots 
of Ipomoea batatas and Telfairia occidentalis as well as 
the shoot of Chromolaena odorata (Table 5). The highest 
average concentration of Pb (0.79 mg.kg-1) and Zn (1.09 
mg.kg-1) in plants from Enyigba mining site was detected 
in the shoot of Ipomoea batatas, Fe (78.1 mg.kg-1) in the 
root of Dioscorea rotundata, Cu (0.95 mg.kg-1) in the root 
of Chromolaena odorata, Cd (0.45 mg.kg-1) in the shoot 
of Telfairia occidentalis, Mn (0.7 mg.kg-1) and Ni (0.09 
mg.kg-1) in the roots of Manihot esculenta and Dioscorea 
rotundata and Cr (0.48 mg.kg-1) in the shoot of Ipomoea 
batatas (Table 5). The limit values for all detected metals 
in the shoots and roots of plants from the reference site were 
not exceeded except for Cd (Table 6). The highest average 
concentration of Pb (0.1 mg.kg-1) in plants from the reference 
site was detected in the shoot of Telfairia occidentalis, 
Zn (0.92 mg.kg-1) in the root of Dioscorea rotundata,  Fe 
(13.17 mg.kg-1) in the root of Telfairia occidentalis, Cu (0.26 
mg.kg-1) in the shoot of Ipomoea batatas, Cd (0.99 mg.kg-1) 
and Mn (0.47 mg.kg-1) in the shoot of Chromolaena odorata, 
Ni (0.09 mg.kg-1) in the shoot of Manihot esculenta and Cr 
(0.11 mg.kg-1) in the shoot and root of Manihot esculenta 

and Telfairia occidentalis respectively (Table 6). The plant 
species accumulated heavy metals to varying levels in their 
shoots and roots. However, higher average concentrations 
of the detected metals occurred in the shoot compared to 
the root (Tables 3 - 6). Although the limit values for all 
detected metals in shoots and roots of the plants from the 
mining sites were not exceeded except in a few instances, 
accumulation of these metals over time could result in 
accumulation and have deleterious consequences on biota 
in the impacted area. In general, the average concentration 
of Fe was highest in both soil and plants compared to other 
detected metals detected in this study (Tables 3 - 6). This 

aligns with the study report by Okeke and Ifemeje (2021). 
The highest average concentration of Pb (2.56 mg.kg-1), Zn 
(2.76 mg.kg-1), Fe (990.5 mg.kg-1), Cd (1.48 mg.kg-1), Ni 
(0.90 mg.kg-1) and Cr (0.99 mg.kg-1) recorded in this study 
occurred in plants from Ameka mining site. In comparison, 
the highest average concentration of Cu (1.31 mg.kg-1) and 
Mn (0.7 mg.kg-1) occurred in plants from Ameri and Enyigba 
mining sites, respectively (Tables 3 - 6). Significantly 
(P ≤ 0.05), higher concentrations of the detected metals 
were determined in the mining sites than in plants from the 
reference site. The obtained results suggest that the degree 
of heavy metal pollution of the mining sites could range in 
the following order: Ameka > Ameri > Enyigba. 

Plants’ accumulation of toxic metals and uptake of 
essential elements varies greatly among plant species due 
to variations in plant metabolic activities (Nasim & Dhir 
2010, Cai et al. 2020). According to Obasi et al. (2012), 
accumulation of Pb could inhibit the activity of enzymes, give 
rise to water imbalance, trigger hormonal changes and alter 
membrane structure in plants. These series of changes disrupt 
metabolic activities in a plant and, at high concentrations, 
may lead to the death of plant cells (Seregin et al. 2004, 
Soucek et al. 2000). The phytotoxic characteristics of Pb 
may include blackening of the roots, chlorosis, and stunted 
growth (Sharma & Dubey 2005). The plant species used 
for this study exhibited observable characteristics such as 
stunted growth and chlorosis, which may have resulted from 
the accumulation of toxic metals near the mining sites. In 
non-tolerant plants, higher levels of Zn could cause chlorosis 
and inhibit root elongation (Sharma & Dubey 2005). The 
elevated levels of the detected Fe call for serious concern 
since the plants are edible. Accumulation of Fe over time 
could result in severe health conditions for consumers (Khan 
et al. 2009). Cu is a vital element necessary for plant growth; 
however, it could be potentially toxic at higher levels (Yruela 
2005, Prasad & Strzalka 1999). At concentrations above  
40mg.kg-1, Cu could be phytotoxic (Prasad & Strzalka 1999). 
In some plants, accumulated Ni protects against fungi and 
bacteria pathogens (Prasad et al. 2005) and, as such, may 
confer such an advantage to plants in the study sites. Cr 
could disrupt metabolic activities and inhibit plant growth 
(Shanker et al. 2005). 

The results of the translocation factor (Phytoextraction 
quotient) of heavy metals in the selected plants are shown in 
Fig. 2 (a-e). The results showed that the translocation factor 
of Manihot esculenta was greater than one (TF > 1) for Zn 
at Ameka site, greater than one (TF > 1) for all the detected 
metals with the exception of Cu, Mn, Zn and Cd at Ameri 
site and less than one (TF < 1) for all the detected metals at 
Enyigba (Fig. 2a). The Dioscorea rotundata had translocation 
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Fig. 2:  Translocation Factor (TF) of (a) Manihot esculenta, (b) Dioscorea rotundata, (c) Ipomoea batatas, 
(d) Telfairia occidentalis and (e) Chromolaena  odorata for all the detected Metals. 

 

 

 

a b 

c d 

e 

Fig. 2:  Translocation Factor (TF) of (a) Manihot esculenta, (b) Dioscorea rotundata, (c) Ipomoea batatas, (d) Telfairia occidentalis and  

(e) Chromolaena  odorata for all the detected Metals.

factor less than one (TF < 1) for all the detected metals at the 
study sites with the exception of Ni which had translocation 

factor greater than one (TF > 1) at Ameka and Ameri sites and 
Zn which had translocation factor greater than one (TF > 1) 
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at Ameri site (Fig. 2b). The translocation factor for Ipomoea 

batatas was greater than one (TF > 1) for all tested heavy 
metals at the study sites (Fig. 2c). The same observation was 
noted for Telfairia occidentalis, except for Ni and Cr that has 
TF < 1 in all the sites (Fig. 2d). The Chromolaena  odorata 
exhibited TF greater than one (TF > 1) for all tested heavy 
metals in all the sites, except for Cd and Cr. 

CONCLUSION

The study revealed the occurrence of heavy metals in 
some selected plant species (Manihot esculenta (Cassava), 
Dioscorea rotundata (White yam), Ipomoea batatas (Sweet 
potatoes), Telfairia occidentalis (Fluted pumpkin) and 

Chromolaena  odorata (Siam weed)) from the vicinity of 
major Lead-Zinc mining sites in Ebonyi State, Nigeria. 
The results showed that plant species in the mining sites 
accumulated varying metals in their shoots and roots. The 
plant species have demonstrated varying effectiveness 
for phytoextraction, indicating their appositeness in the 
phytoremediation of heavy metal-contaminated soil. 
However, the limit values for all detected metals in the shoots 
and roots of the plant species were not exceeded except in 
a few instances. The results obtained in our study suggest 
that the Ameka mining site could be more polluted than 
Ameri and Enyigba mining sites. Therefore, examining the 
environmental consequences of uncontrolled Pb-Zn mining 
activity in the vicinity of the mining sites with a scientific 
approach has helped to increase our knowledge of the 
pollution problem in the mining sites, reveal the ferocity 
of the situation, and contributed to the techniques presently 
in use for monitoring of chemical pollution in a mining-
impacted ecosystem.
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