
   2022pp. 1113-1123  Vol. 21
p-ISSN: 0972-6268 
(Print copies up to 2016) No. 3  Nature Environment and Pollution Technology

  An International Quarterly Scientific Journal

Original Research Paper

e-ISSN: 2395-3454

Open Access JournalOriginal Research Paperhttps://doi.org/10.46488/NEPT.2022.v21i03.016

Assessing the Capacities of Different Remote Sensors in Estimating Forest 
Stock Volume Based on High Precision Sample Plot Positioning and Random 
Forest Method
Yang Hu* and Zhongqiu Sun**†
*School of Ecology and Environment, Ningxia University, Yinchuan 750021, China
*Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration in Northwest China, Ningxia 
University, Yinchuan 750021, China
*Key Laboratory for Restoration and Reconstruction of Degraded Ecosystem in Northwest China of Ministry of 
Education, Ningxia University, Yinchuan 750021, China
**Academy of Inventory and Planning, National Forestry and Grassland Administration, Beijing 100714, China
†Corresponding author: Zhongqiu Sun; qiuqiu8708@163.com

ABSTRACT

Forest stock volume (FSV) is an important forest resource indicator. Satellite images from various 
sensors have been used to estimate FSV. However, there is still a lack of comparative studies on the 
estimation of FSV with remote sensing data obtained by different sensors. In addition, there is a lack 
of high-precision ground sample positioning methods, which can improve the matching of ground data 
and remote sensing data to a certain extent, and improve the estimation accuracy. In this research, a 
new ground sample plot positioning method was proposed, which could achieve sub-meter positioning 
accuracy in forest areas, greatly improving the matching accuracy of ground sample plot data and 
remote sensing data. Based on this high-precision positioning method and the random forest algorithm, 
we compared and quantified the ability of different sensors to estimate the FSV. The results by random 
forest modeling showed that the images from a single sensor, Sentinel-2, performed best in the test 
dataset (R2 = 0.57, RMSE = 70.12 m3 ha-1). For the data from two sensors, the best performance was 
achieved by the combined Sentinel-2 and PALSAR2/PALSAR data, which had an R2 of 0.62 with RMSE 
of 65.51 m3 ha-1 in the validation data. The images from the three sensors, Sentinel-2, Landsat-8, and 
PALSAR2/PALSAR, achieved a modeling accuracy of R2 (0.62) and RMSE (65.40 m3 ha-1). The results 
clearly showed the capacity of the different sensor data to estimate FSV based on the high precision 
sample plot positioning method, and it will help forest researchers investigate and estimate the FSV in 
the future.

INTRODUCTION 

As an important part of terrestrial ecosystems, forests play 
vital roles in both economic development and ecosystem pro-
tection. Forests are an important renewable natural resource 
that is crucial to the strategic timber security of a country 
(Xia et al. 2019). At the same time, forest ecosystems are 
the largest carbon pools in terrestrial ecosystems (Sun et al. 
2020). Due to the close relationship between forests and car-
bon (Mitchard 2018), any change in forests directly impacts 
carbon sequestration (Zhang et al. 2020). Also, forest ecosys-
tems play an irreplaceable role in ecosystems that includes 
absorbing carbon dioxide from the air, providing animal hab-
itat, maintaining the carbon balance, and mitigating global 
climate. The management and monitoring of forests mainly 
require focusing on the information about wood resources, 
which can be assessed through the volume of trees, which is 

commonly known as the forest stock volume (FSV). Forest 
resource inventories are primarily conducted to estimate the 
existing FSV in forests, which has practical relevance for 
ecological environmental monitoring and sustainable forest 
management. Therefore, accurately assessing FSV at the 
regional and national scales is of great significance.

Currently, some studies have been performed based on a 
single sensor data or the combination of various sensor data 
for FSV estimation. For instance, Chrysafis et al. (2017) per-
formed FSV estimation research using Sentinel-2 and Land-
sat-8 data in Greece. By modeling with the random forest 
(RF) algorithm, they obtained the best FSV prediction result 
with Sentinel-2 data (R2 = 0.63, RMSE = 63.11 m3.ha-1). 
Muaya et al. (2019) estimated the FSV of a small-scale forest 
plantation in Tanzania with Sentinel-1(SAR), Sentinel-2, 
and ALOS PALSAR2 data with multiple linear regression 
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algorithms. They found that the Sentinel-2 data (RMSEr = 
42.03%, pseudo-R2 = 0.63) performed better than the com-
bined Sentinel-1 and Sentinel-2 data (RMSEr = 46.98%, 
pseudo-R2= 0.52), and Sentinel-1 performed worst (RMSEr 
= 59.48%, pseudo-R2= 0.18). These studies showed that 
different data combinations had different forest parameter 
estimation results. Further research is needed to evaluate the 
feasibility and limitations of multi-sensor integrated datasets 
to estimate forest parameters (such as FSV). On the other 
hand, the complex collinearity among independent variables 
is an urgent problem during the process of model construction 
that cannot be avoided in traditional linear regression models, 
for example, some parametric methods. However, RF, which 
is a non-linear algorithm, could solve complex collinearity 
problems. Compared to the multiple regression algorithm, 
the resistance to collinearity and robustness to outliers of the 
RF algorithm make it uniquely feasible for predicting forest 
parameters using remote sensing variables (Breiman 2001).

In addition to remote sensing data and modeling algo-
rithms, the importance of ground truth from sample plot data 
should not be ignored. However, the positioning accuracy of 
traditional handheld GPS units in forest areas is very low, 
and the error can even exceed 30 m (Stefanoni et al. 2018). 
Given the large position deviation in forests, it is necessary 
to find a positioning method to solve this problem. Huang 
et al. (2013) found that the accurate plot location recorded 
by DGPS (1-meter accuracy) reduced the geolocation error 
and thus achieved high prediction accuracy in the estimation 
of forest AGB (Huang et al. 2013).

This study has two objectives: (1) to test and determine a 
new forest sample plot positioning method that can achieve 
sub-meter accuracy in deep mountain forests and (2) to assess 
the performance of different sensor datasets (Sentinel-1, Sen-
tinel-2, Landsat-8, and PALSAR2/PALSAR) in estimating 
FSV based on ground sample plots using the new positioning 
method. This paper will propose a new forest sample plot 
positioning method, clarify the performance of the yearly 
Sentinel-1, Sentinel-2, Landsat-8, and PALSAR2/PALSAR 
data in estimating the FSV in Southern China, especially 
Hunan Province, and even promote the estimation of FSV 
throughout the whole country.

MATERIALS AND METHODS

High-Precision Positioning Experimental Design

Three GNSS receivers produced by the Hi-Target Navigation 
Technology Corporation (H32 Almighty GNSS RTK System) 
were used in this experiment. A GNSS receiver was set up 
in a wide urban area, which ensured that the GNSS receiver 
could receive satellite signals well and use the continuously 

operating reference stations (CORS) service to achieve ac-
curate positioning. The other two GNSS receivers were set 
up in the dense forest, in which the canopy density reached 
0.7 or more. All three GNSS receivers worked together for 
30 min at each designed distance (Fig. 1).

Measurement Accuracy Evaluation Method on 
Positioning

The CORS service was used in all GNSS receivers to obtain 
the coordinates R (Xr, Yr) as true positioning values. All 
GNSS receivers could also obtain the coordinates E (Xe, Ye) 
after the post-decomposition calculation. Then, equation 
(1) was used to calculate the Derror, which represented the 
positioning accuracy.
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Fig. 1: Flowchart of the GNSS positioning experiment. 

Measurement Accuracy Evaluation Method on Positioning 
The CORS service was used in all GNSS receivers to obtain the coordinates R (Xr, 

Yr) as true positioning values. All GNSS receivers could also obtain the coordinates E 
(Xe, Ye) after the post-decomposition calculation. Then, equation (1) was used to 
calculate the Derror, which represented the positioning accuracy. 
𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = √(𝑋𝑋𝑒𝑒 − 𝑋𝑋𝑒𝑒)2 + (𝑌𝑌𝑒𝑒 − 𝑌𝑌𝑒𝑒)2               …(1) 

Sample Plot Data Collection 
A total of 459 sample plots were investigated from October 1, 2017, to April 1, 

2018, in Hunan province (Table 1, Fig. 2). The newly designed sample plot positioning 
method was used to position the individual tree and sample plot centers. The Vertex 
Laser VL5 was used to measure the tree heights. A DBH tape was used to measure the 
diameter at the breast height of the trees. All trees in the sample plots with DBHs greater 
than 5 cm were measured. The shape of the sample plot was a circle with a diameter of 
30 m. The FSV of the sample plot was calculated (Hu et al. 2020) and extended to the 
hectare scale. To accurately match the remote sensing pixels, the sample plots were 
resampled to a cell size of 25 m × 25 m. To normally distribute the FSV data, the data 
were processed with a normal transformation function (f(FSV) = FSVλ, λ =0.4) (Pan et 
al. 2019). 
Table 1: Summary of normally transformed sample plots. 

Forest types Main species Number of plots FSV (m3 ha-1) 

               …(1)

Sample Plot Data Collection

A total of 459 sample plots were investigated from Octo-
ber 1, 2017, to April 1, 2018, in Hunan province (Table 1, Fig. 
2). The newly designed sample plot positioning method was 
used to position the individual tree and sample plot centers. 
The Vertex Laser VL5 was used to measure the tree heights. 
A DBH tape was used to measure the diameter at the breast 
height of the trees. All trees in the sample plots with DBHs 
greater than 5 cm were measured. The shape of the sample 
plot was a circle with a diameter of 30 m. The FSV of the 
sample plot was calculated (Hu et al. 2020) and extended to 
the hectare scale. To accurately match the remote sensing 
pixels, the sample plots were resampled to a cell size of 25 
m × 25 m. To normally distribute the FSV data, the data were 
processed with a normal transformation function (f(FSV) = 
FSVλ, λ =0.4) (Pan et al. 2019).

Landsat-8 Surface Reflectance Tier 1 Data

Landsat-8 Surface Reflectance Tier 1 data were available on 
the Google Earth Engine (GEE) platform. To match the date 
of our sample plot data and fully cover the research area, the 
date filter was set from May 1, 2017, to October 31, 2017, and 
May 1, 2018, to October 31, 2018. Clouds and cloud shadows 
were masked by the “pixel-qa” band. A “median” function 
was applied to extract the median value of all overlapping 
images, and seven characteristic spectral bands (e.g., B2, B3, 
B4, B5, B6, B7, B10) were finally calculated. All calculated 
bands were resampled to a 25 m resolution.

Sentinel-2 Level-1C Data

Sentinel-2 Level-1C product was used to extract the spectral 
characteristics, and the date filter was set from May 1, 2017, 
to October 31, 2017, and May 1, 2018, to Oct 31, 2018. Three 
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Table 1: Summary of normally transformed sample plots.

Forest types Main species Number of plots FSV (m3 ha-1)

Min Max Mean Median Std

Broadleaf forest Quercus, Cinnamomum camphora, Phoebe zhen-
nan, Alniphyllum fortunei, Liquidambar formosana, 
Schima superba, Gum trees, etc.

169 1.15 11.30 5.95 6.14 2.11

Needleleaf forest Cunninghamia lanceolata, Pinus massoniana, 
Cupressus funebris, Metasequoia glyptostroboides, 
Cryptomeria, etc.

231 1.52 12.72 6.38 6.46 2.20

Mixed forest Cunninghamia lanceolata, Pinus massoniana, 
Cupressus funebris, Quercus, Cinnamomum cam-
phora, Phoebe zhennan, Alniphyllum fortunei, etc.

59 1.78 11.43 6.77 7.04 2.33

available bands were first used to mask the clouds in the 
images. The QA60 band is a cloud mask band that is used 
to mask opaque clouds with a threshold setting of less than 
1. Then, the B1 band was used to mask cirrus clouds with a 
threshold setting of less than 1500. The B2 band was used 
to mask cirrus clouds with a threshold setting of greater than 
2500. After that, the “median” function was used to extract 

pixel values. Eleven bands were calculated (i.e., B2, B3, B4, 
B5, B6, B7, B8, B8A, B10, B11, B12), and all bands were 
resampled to a 25 m resolution.

Global PALSAR2/PALSAR Data

The global 25 m PALSAR2/PALSAR mosaic data are avail-
able from January 1, 2007, to January 1, 2018, on the GEE 
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platform. The 2017 yearly mosaic data was used to match 
our sample plot data. The HH and HV bands were selected 
and processed in windows of different sizes (1 ×1 pixel, 3 ×3 
pixels, 5 ×5 pixels, 7 ×7 pixels, 9 ×9 pixels, 11 ×11 pixels, 
13 ×13 pixels). Then, equation (2) was used to convert the 
DN values to gamma naught values in decibel units (dB) 
(Qin et al. 2017).

 

  

1, 2018, to October 31, 2018. Clouds and cloud shadows were masked by the “pixel-
qa” band. A “median” function was applied to extract the median value of all 
overlapping images, and seven characteristic spectral bands (e.g., B2, B3, B4, B5, B6, 
B7, B10) were finally calculated. All calculated bands were resampled to a 25 m 
resolution. 

Sentinel-2 Level-1C Data 
Sentinel-2 Level-1C product was used to extract the spectral characteristics, and 
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31, 2018. Three available bands were first used to mask the clouds in the images. The 
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Global PALSAR2/PALSAR Data 
The global 25 m PALSAR2/PALSAR mosaic data are available from January 1, 

2007, to January 1, 2018, on the GEE platform. The 2017 yearly mosaic data was used 
to match our sample plot data. The HH and HV bands were selected and processed in 
windows of different sizes (1 ×1 pixel, 3 ×3 pixels, 5 ×5 pixels, 7 ×7 pixels, 9 ×9 pixels, 
11 ×11 pixels, 13 ×13 pixels). Then, equation (2) was used to convert the DN values to 
gamma naught values in decibel units (dB) (Qin et al. 2017). 
𝛾𝛾0 = 10 log10 DN2 − 83.0 dB                      …(2) 

Sentinel-1 SAR Data 
The Sentinel-1 SAR ground range detected (GRD) dataset has data that starts on 

October 3, 2014, on the GEE platform; the further data processing was conducted based 
on the research of Hird et al. (2017), including (1) masking the edges of the images 
using the angle; (2) filtering out windy days using climate forecasts; (3) performing 
angle correction; and (4) filtering with different windows (1 × 1 pixel, 3 × 3 pixels, 5 × 
5 pixels, 7 × 7 pixels, 9 × 9 pixels, 11 × 11 pixels, 13 × 13 pixels). 

RF Regression Algorithm 
The RF regression algorithm is a popular regression algorithm in this field of study. 

It uses the bootstrap method to generate multiple datasets to build multiple decision 
trees (regression trees). The average of the predicted values of the multiple decision 
trees is used as the final output of the RF regression model. The RF regression model 
can be mathematically summarized as follows: given a data sample 𝑋𝑋 and a prediction 
set 𝑌𝑌, a forest-dependent on the random variable 𝜃𝜃 is planted on this basis to form a 
tree predictor ℎ(𝑋𝑋, 𝜃𝜃𝑘𝑘), which outputs the result as a numerical value. The RF predictor 
is obtained by averaging these trees { ℎ(𝑋𝑋, 𝜃𝜃𝑘𝑘)} with respect to 𝑘𝑘 (k represents the 
number of sub-training datasets). The RF regression function is as follows: 𝑌𝑌 =
𝐸𝐸𝜃𝜃ℎ(𝑋𝑋, 𝜃𝜃𝑘𝑘). The out-of-bag (OOB) data was used to calculate the prediction error (PE) 
of each regression tree (Equation (3)). 
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The Sentinel-1 SAR ground range detected (GRD) dataset has 
data that starts on October 3, 2014, on the GEE platform; the 
further data processing was conducted based on the research 
of Hird et al. (2017), including (1) masking the edges of the 
images using the angle; (2) filtering out windy days using 
climate forecasts; (3) performing angle correction; and (4) 
filtering with different windows (1 × 1 pixel, 3 × 3 pixels, 5 × 5 
pixels, 7 × 7 pixels, 9 × 9 pixels, 11 × 11 pixels, 13 × 13 pixels).

RF Regression Algorithm

The RF regression algorithm is a popular regression algo-

rithm in this field of study. It uses the bootstrap method to 
generate multiple datasets to build multiple decision trees 
(regression trees). The average of the predicted values of 
the multiple decision trees is used as the final output of 
the RF regression model. The RF regression model can be 
mathematically summarized as follows: given a data sample 
X and a prediction set Y, a forest-dependent on the random 
variable q is planted on this basis to form a tree predictor h(X, 
qk), which outputs the result as a numerical value. The RF 
predictor is obtained by averaging these trees {h(X, qk)} with 
respect to k (k represents the number of sub-training datasets). 
The RF regression function is as follows: Y = Eqh(X, qk). The 
out-of-bag (OOB) data was used to calculate the prediction 
error (PE) of each regression tree (Equation (3)).

 

  

PE =  𝐸𝐸𝜃𝜃𝐸𝐸X,Y(𝑌𝑌 − ℎ(𝑋𝑋, 𝜃𝜃𝑘𝑘))2                      …(3) 
The principle of the RF regression is as follows (Fig. 3): 
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Fig. 3: Flowchart of the RF principle. 

In the model development (number = 321, ratio = 0.7) and model test (number = 
138, ratio = 0.3), the performance of each RF model was evaluated by the coefficient 
of determination (R2) and root mean square error (RMSE) (Wang et al. 2019). 
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Where 𝑓𝑓𝑖𝑖 is the modeling predictor; 𝑦𝑦𝑖𝑖 is the measured value of the sample plot; �̅�𝑦 is the mean 
measured value of the sample plot; and m is the number of training and test data points. 

Variable Selection 
Variable selection is necessary when modeling with a large number of independent 

variables. It simplified the models, shortens the training times, breaks the curse of 
dimensionality, and enhances the generalization by reducing over-fitting. In this study, 
the “VSURF” package in R 3.5.3 was used to select variables for different data 
combinations (Genuer et al. 2015).  

RESULTS   

The Newly Designed Differential Positioning Accuracies 
Through the static relative positioning test under different distances, different 

times, and different stand environments, it can be concluded that distance, time, and 
forest stand environment all have different effects on the positioning accuracy (Fig. 4). 
Under the forest stand conditions of the first canopy density level, the GNSS receiver 
can reach a positioning accuracy of 0.50 m within a static range of 30 km for 10 minutes. 
However, under the second canopy density forest stand condition, the static duration of 
more than 25 min at a distance of 30 km is required to achieve a positioning accuracy 
of 0.50 m. Under the third canopy density forest stand conditions, at least 20 minutes 
of the static state is required at a distance of 30 km. 
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𝑖𝑖=1                       …(5) 

Where 𝑓𝑓𝑖𝑖 is the modeling predictor; 𝑦𝑦𝑖𝑖 is the measured value of the sample plot; �̅�𝑦 is the mean 
measured value of the sample plot; and m is the number of training and test data points. 

Variable Selection 
Variable selection is necessary when modeling with a large number of independent 

variables. It simplified the models, shortens the training times, breaks the curse of 
dimensionality, and enhances the generalization by reducing over-fitting. In this study, 
the “VSURF” package in R 3.5.3 was used to select variables for different data 
combinations (Genuer et al. 2015).  

RESULTS   

The Newly Designed Differential Positioning Accuracies 
Through the static relative positioning test under different distances, different 

times, and different stand environments, it can be concluded that distance, time, and 
forest stand environment all have different effects on the positioning accuracy (Fig. 4). 
Under the forest stand conditions of the first canopy density level, the GNSS receiver 
can reach a positioning accuracy of 0.50 m within a static range of 30 km for 10 minutes. 
However, under the second canopy density forest stand condition, the static duration of 
more than 25 min at a distance of 30 km is required to achieve a positioning accuracy 
of 0.50 m. Under the third canopy density forest stand conditions, at least 20 minutes 
of the static state is required at a distance of 30 km. 

 …(5)

Where fi is the modeling predictor; yi is the measured 
value of the sample plot; y is the mean measured value of 
the sample plot; and m is the number of training and test 
data points.

Variable Selection

Variable selection is necessary when modeling with a large 
number of independent variables. It simplified the models, 
shortens the training times, breaks the curse of dimensional-
ity, and enhances the generalization by reducing over-fitting. 
In this study, the “VSURF” package in R 3.5.3 was used to 
select variables for different data combinations (Genuer et 
al. 2015). 

RESULTS  

The Newly Designed Differential Positioning 
Accuracies

Through the static relative positioning test under different 
distances, different times, and different stand environments, 
it can be concluded that distance, time, and forest stand envi-
ronment all have different effects on the positioning accuracy 

  

Min Max Mean Median Std 

Broadleaf forest 

Quercus, Cinnamomum 

camphora, Phoebe zhennan, 

Alniphyllum fortunei, 

Liquidambar formosana, 

Schima superba, Gum trees, etc. 

169 1.15 11.30 5.95 6.14 2.11 

Needleleaf forest 

Cunninghamia lanceolata, 

Pinus massoniana, Cupressus 

funebris, Metasequoia 

glyptostroboides, Cryptomeria, 

etc. 

231 1.52 12.72 6.38 6.46 2.20 

Mixed forest 

Cunninghamia lanceolata, 

Pinus massoniana, Cupressus 

funebris, Quercus, 

Cinnamomum camphora, 

Phoebe zhennan, Alniphyllum 

fortunei, etc. 

59 1.78 11.43 6.77 7.04 2.33 

 
Fig. 2: Sample plots spatial distribution in Hunan, China. 

Landsat-8 Surface Reflectance Tier 1 Data 
Landsat-8 Surface Reflectance Tier 1 data were available on the Google Earth 

Engine (GEE) platform. To match the date of our sample plot data and fully cover the 
research area, the date filter was set from May 1, 2017, to October 31, 2017, and May 

Fig. 2: Sample plots spatial distribution in Hunan, China.
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(Fig. 4). Under the forest stand conditions of the first canopy 
density level, the GNSS receiver can reach a positioning 
accuracy of 0.50 m within a static range of 30 km for 10 
minutes. However, under the second canopy density forest 
stand condition, the static duration of more than 25 min at a 
distance of 30 km is required to achieve a positioning accu-
racy of 0.50 m. Under the third canopy density forest stand 
conditions, at least 20 minutes of the static state is required 
at a distance of 30 km.

Selection of Variables for Image Classification

For the Sentinel-1 and PALSAR2/PALSAR variables, 
only 2 variables (HH, VV) were included in each window 
size, and the variable selection step was not conducted. 
The preprocessing step was performed first to decide 
which window size had a stronger relationship with the 
FSV. However, considering the weak performance of 
the Sentinel-1 data, we only selected the PALSAR2/
PALSAR variables of 11×11 window size to estimate the  
FSV.

The “VSURF” package was used for the Sentinel-2 
and Landsat-8 variables. For the Sentinel-2 variables, 5 out 
of 11 variables were selected: blue band (B2), green band 

(B3), red band (B4), red edge 1 band (B5), and SWIR 1 
band (B11). In Landsat-8 variables, 6 out of 9 variables 
were selected: ultra-blue band (B1), green band (B3), red 
band (B4), near-infrared band (B5), shortwave infrared-2 
band (B7), and brightness temperature band (B11). The 
variable combinations for all cases are summarized in  
Table 2.

FSV Estimation with the RF Regression Model

For the training data, Fig. 5 shows the performance of differ-
ent data combinations in the training phase. The best perfor-
mance was the data combination with Sentinel-2, Landsat-8, 
and PALSAR2/PALSAR, with the highest R2 = 0.94 and the 
lowest RMSE = 32.19 m3.ha-1. The worst performance was 
the PALSAR2/PALSAR (except Sentinel-1), with the lowest 
R2 = 0.86 and the largest RMSE = 47.75 m3.ha-1. 

For the test data, Fig. 6 shows the performance of differ-
ent data combinations in the test phase. The best performance 
was also the combined Sentinel-2, Landsat-8, and PALSAR2/
PALSAR data, which had the highest R2(0.62) and the lowest 
RMSE (65.40 m3.ha-1). The worst performance was the PAL-
SAR2/PALSAR (except Sentinel-1), which had the lowest 
R2 = 0.25 and the largest RMSE = 81.87 m3.ha-1. 

...

Tree classifier 1

Random forests Predicted result

Randomize

Bootstrap sample set 1

All 
training 
sample 

data

Bootstrap sample set i

Bootstrap sample set k

...

Tree classifier i

Tree classifier k

...
...

Fig. 3: Flowchart of the RF principle.

Table 2: The selected variables for RF modeling.

Sensor(s) Variable selection

P11 H11 V11

S2 S2_B2 S2_B3 S2_B4 S2_B5 S2_B11

L8 L8_B1 L8_B3 L8_B4 L8_B5 L8_B7 L8_B11

S2+P11 S2_B2 S2_B3 S2_B4 S2_B5 S2_B11 H11 V11

L8+P11 L8_B1 L8_B3 L8_B4 L8_B5 L8_B7 L8_B11 H11 V11

S2+L8 S2_B2 S2_B3 S2_B4 S2_B5 S2_B11 L8_B1 L8_B3 L8_B4 L8_B5 L8_B7 L8_B11

S2+ L8+P11 S2_B2 S2_B3 S2_B4 S2_B5 S2_B11 L8_B1 L8_B3 L8_B4 L8_B5 L8_B7 L8_B11 H11 V11

Note: S2 stands for Sentinel-2, L8 stands for Landsat-8, P11 stands for PALSAR2/PALSAR in an 11×11 window size, and H11 stands for HH in an 11×11 
window size, and V11 stands for HH in an 11×11 window size.
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DISCUSSION 

The Potential Of Multi-Sensor Image Data to Improve 
FSV Estimation

For the Sentinel-1 SAR data, the performance of FSV es-
timation was very poor. A similar study also found that the 
Sentinel-1 SAR data did not perform well in estimating FSV, 
with an R2 of only 0.18 (Mauya et al. 2019). The main reason 
for the poor performance may be the saturation problem 
(Huang et al. 2018). Since the SAR-C band is easily affected 
by speckle noise in complex forests, some studies have only 
used Sentinel-1 SAR on grass fields (Crabbe et al. 2019).

When considering the L-band PALSAR2/PALSAR 
dataset, it performed slightly better than the SAR-C band 

dataset because the PALSAR2/PALSAR L-band dataset had 
a higher saturation than the Sentinel-1 SAR-C band dataset 
in estimating FSV. However, it still did not perform well. 
Some studies also showed that the ALOS PALSAR data did 
not perform well in forest biomass estimation (Zhao et al. 
2016). Saturation is a major cause of poor performance. Some 
studies have also found that saturation problems could occur 
in some forest areas using ALOS PALSAR data to estimate 
FSV (Antropov et al. 2013). In our sample plot data, the 
sample values ranged from 1.42 m3.ha-1 to 577.49 m3.ha-1, 
and many sample values were under 100 m3.ha-1, which may 
be the main reason for our poor modeling result. 

For the single dataset, Sentinel-2 performed best both 
in the training phase and test phase, which showed that the 
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Fig. 4: Static relative positioning error at different distances, different times, and different forest 

environments: (a) non-forest area, (b)the first canopy density level forest area, (c) the second 

canopy density level forest area, and (d) the third canopy density level forest area. 

Selection of Variables for Image Classification 
For the Sentinel-1 and PALSAR2/PALSAR variables, only 2 variables (HH, VV) 

were included in each window size, and the variable selection step was not conducted. 
The preprocessing step was performed first to decide which window size had a stronger 
relationship with the FSV. However, considering the weak performance of the Sentinel-
1 data, we only selected the PALSAR2/PALSAR variables of 11×11 window size to 
estimate the FSV. 

The “VSURF” package was used for the Sentinel-2 and Landsat-8 variables. For 
the Sentinel-2 variables, 5 out of 11 variables were selected: blue band (B2), green band 
(B3), red band (B4), red edge 1 band (B5), and SWIR 1 band (B11). In Landsat-8 
variables, 6 out of 9 variables were selected: ultra-blue band (B1), green band (B3), red 
band (B4), near-infrared band (B5), shortwave infrared-2 band (B7), and brightness 
temperature band (B11). The variable combinations for all cases are summarized in 
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environments: (a) non-forest area, (b)the first canopy density level forest area, (c) the second 

canopy density level forest area, and (d) the third canopy density level forest area. 

Selection of Variables for Image Classification 
For the Sentinel-1 and PALSAR2/PALSAR variables, only 2 variables (HH, VV) 

were included in each window size, and the variable selection step was not conducted. 
The preprocessing step was performed first to decide which window size had a stronger 
relationship with the FSV. However, considering the weak performance of the Sentinel-
1 data, we only selected the PALSAR2/PALSAR variables of 11×11 window size to 
estimate the FSV. 

The “VSURF” package was used for the Sentinel-2 and Landsat-8 variables. For 
the Sentinel-2 variables, 5 out of 11 variables were selected: blue band (B2), green band 
(B3), red band (B4), red edge 1 band (B5), and SWIR 1 band (B11). In Landsat-8 
variables, 6 out of 9 variables were selected: ultra-blue band (B1), green band (B3), red 
band (B4), near-infrared band (B5), shortwave infrared-2 band (B7), and brightness 
temperature band (B11). The variable combinations for all cases are summarized in 

Fig. 4: Static relative positioning error at different distances, different times, and different forest environments: (a) non-forest area, (b)the first canopy 
density level forest area, (c) the second canopy density level forest area, and (d) the third canopy density level forest area.
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Fig. 5: The performance of the different sensors in the training phase. 

For the test data, Fig. 6 shows the performance of different data combinations in 
the test phase. The best performance was also the combined Sentinel-2, Landsat-8, and 
PALSAR2/PALSAR data, which had the highest R2(0.62) and the lowest RMSE (65.40 
m3.ha-1). The worst performance was the PALSAR2/PALSAR (except Sentinel-1), 
which had the lowest R2 = 0.25 and the largest RMSE = 81.87 m3.ha-1.  
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For the test data, Fig. 6 shows the performance of different data combinations in 
the test phase. The best performance was also the combined Sentinel-2, Landsat-8, and 
PALSAR2/PALSAR data, which had the highest R2(0.62) and the lowest RMSE (65.40 
m3.ha-1). The worst performance was the PALSAR2/PALSAR (except Sentinel-1), 
which had the lowest R2 = 0.25 and the largest RMSE = 81.87 m3.ha-1.  
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For the test data, Fig. 6 shows the performance of different data combinations in 
the test phase. The best performance was also the combined Sentinel-2, Landsat-8, and 
PALSAR2/PALSAR data, which had the highest R2(0.62) and the lowest RMSE (65.40 
m3.ha-1). The worst performance was the PALSAR2/PALSAR (except Sentinel-1), 
which had the lowest R2 = 0.25 and the largest RMSE = 81.87 m3.ha-1.  

Fig. 5: The performance of the different sensors in the training phase.
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DISCUSSION  

The Potential Of Multi-Sensor Image Data to Improve FSV Estimation 
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Sentinel-2 dataset was more appropriate than the Landsat-8 
dataset, with B5 (red edge 1) possibly having a positive effect 
on the FSV estimation. Some studies have proven that the red 
edge information was related to FSV and biomass estimation 
(Vaglio et al. 2014). For the data combination, although the 
combined Sentinel-2, Landsat-8, and PALSAR2/PALSAR 
data performed best, the Sentinel-2 and PALSAR2/PALSAR 
datasets performed only slightly worse than the three data 
combinations. The combined Landsat-8 and PALSAR2/
PALSAR data not only had the worst performance among 
the data combinations but also performed worse than the 
Sentinel-2 data. This showed that it was unnecessary to 
use Landsat-8 data when Sentinel-2 data was being used 
to estimate FSV. Additionally, adding PALSAR2/PALSAR 
may only create a small level of positive feedback for FSV  
estimation.

Although the fusion of the three data sources improved 
the prediction performance under the RF regression model, 
the test accuracy was still not high. This was caused by 
the saturation of the data. In forestland with a small FSV, 
sparse trees and bare ground directly impact the spectral and 
microwave signals, which affects the accuracy of modeling. 
Spectral unmixing may be a way to improve the modeling 
accuracy (Lu et al. 2005). In forestland with a high FSV, 
optical image and microwave signal saturation were the 
main reasons leading to the decline in the prediction mod-
el’s performance. To date, there has been no effective way 
to solve the saturation problem caused by the data itself 
(Lu et al. 2016). However, some studies have found that 
the LiDAR data performed quite well in the forest research 
field based on its unique ability to penetrate the canopy  
(Hu et al. 2019). 

Potential of Machine Learning Methods and High-
Quality In-Situ Data to Improve FSV Estimation

To achieve such modeling results in a large mountain area 
in Southern China with a large range of sample values, two 
points should be considered to achieve the ambitious goals 
of the study. The first point is the optimized RF algorithm. 
The best parameters (mtry, ntree) were calculated first to 
build the regression trees, which may have improved the 
accuracy of the regression model prediction. With some 

studies using default values (mtry is 
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The measurements of the trees mainly included tree height 
and DBH, which are directly related to the tree volume and 
therefore directly related to the FSV of the sample plot. 
The sample plots used in this study were circle plots with a 
diameter of 30 m, which was different from the resampling 
pixel size of remote sensing data. Although the FSV was 
calculated based on the size of the area and the center position 
of the plot, since pixels and sample plots were not directly 
matched, some errors will inevitably occur. This problem 
could be solved quite well by setting up large-area sample 
plots and using the pixel coordinates to directly extract the 
tree volumes in the plots. For the tree volume formula, not 
all tree species have corresponding calculation equations. 
Tree volume calculation through tree species classification 
will also have a certain impact on the original volume value. 
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a normal distribution, the prediction accuracy of the model 
may be further improved (Mohd et al. 2018).

CONCLUSION

In this study, a new positioning method was proposed to 
obtain the center coordinates of sample plots and achieved an 
accuracy within 0.5 m. The sample plots were used to assess 
the capacity of the different sensor datasets to estimate FSV. 
Finally, the results showed that the Sentinel-1 SAR data and 
PALSAR2/PALSAR data was not suitable for estimating 
FSV in Southern China. However, the PALSAR2/PALSAR 
data could provide positive feedback when combined with 
other sensor data. Although the combined Sentinel-2, Land-
sat-8, and PALSAR2/PALSAR data performed best, the com-
bination performed only slightly better than the combined 
Sentinel-2 and PALSAR2/PALSAR data. The third best per-
formance was the Sentinel-2 data, which had a performance 
that was very close to that of the combined Sentinel-2 and 
PALSAR2/PALSAR data. Using Sentinel-2 data to estimate 
FSV is a good choice on a provincial scale. Combining Land-
sat-8 and PALSAR2/PALSAR data could not greatly improve 
the accuracy of the estimation. We will attempt to use Li-
DAR data and deep learning methods to estimate FSV in the  
future.
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