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ABSTRACT

In recent years, cities in southern China have experienced severe air pollution, despite having few 
sources of pollutants. To study the pollution characteristics of PM2.5 in these “low industrialized” cities, 
a numerical method based on the HYSPLIT4 Model and Kriging Spatial Interpolation Technology was 
established. Simulation results showed that the PM2.5 pollution in Guilin was affected by both internal 
and external sources. The backward air mass trajectory from July 2017 to June 2018 was simulated 
using the HYSPLIT model. The cluster analysis results indicated that the direction of trajectory  
accounted for 63.09% of the air pollution in the city. The average concentration of PM2.5 pollution 
was 45.94 μg.m-3. The pollutant originated from the “Xiang-Gui Corridor.” The location of the sources 
was collocated with high industry regions. The spatial characteristics of the four pollution processes 
in the winter of 2017 were analyzed using a spatial interpolation method. The results showed that 
the transport of air masses in the direction of trajectory  was obstructed by a mountain system in 
the northeast. Therefore, two air pollution accumulation centers and a topographic weakening zone 
dominated by internal and external sources were formed. It can be inferred that the air pollution in 
Guilin is affected by both internal and external factors. These results provide important theoretical and 
technical support for regional air pollution control and environmental protection.

INTRODUCTION

The Chinese government implemented a series of air pollu-
tion prevention and control measures to improve the country’s 
air quality. Under this situation, air quality in most regions 
has improved, but pollution remains serious in some areas 
(Luan et al. 2018, Jiang et al. 2018, Cui et al. 2019, Sun et 
al. 2019). It is worth noting that tourist areas in southern 
China, such as Guilin, have also suffered serious air pollution, 
despite having fewer sources of pollutants. However, there is 
no clear conclusion about the cause of air pollution in tourist 
areas, which are quite different from those in industrial cities 
because of their characteristics. In recent years, with the 
development of tourism, the eco-environmental problems 
in Guilin have been a cause of concern for environmental 
workers. Bai et al. (2017) studied the impact of climate re�-
sources on the tourism development of Guilin International 
Resort and found that air pollution would affect tourism 
development. As a tourism city, ensuring the air quality of 
Guilin is necessary and important.

Scholars adopted several tools to analyze the sources of 
air pollutants and characterize pollution characteristics. For 

example, Zhang et al. (2019) employed the Comprehen-
sive Air Quality Model Extensions (CAMx) based on the 
Particulate Source Apportionment Technology (PSAT) to 
simulate and analyze the sources of PM2.5 in Beijing. They 
found that 47.6% of the PM2.5 originated from local sourc-
es. Zhang et al. (2018) used the Community Multiscale Air 
Quality Modeling System (CMAQ) to simulate the changes 
of surface PM2.5 in Qingdao during winter. They found that 
PM2.5 accounted for 72.7%–93.2% of the daily emissions. 
This percentage would decrease by about 21% when con-
sidering the pollution process, and the proportion of aerosol 
accumulation would increase by about 6%. Another study by 
Yang et al. (2019) used the WRF-SMOKE-CMAQ model to 
analyze the life cycle of PM2.5 in Xi’an from 2014 to 2017. 
The study concluded that the PM2.5 concentrations increased 
from 82.4 μg.m-3 to 95.4 μg.m-3 as a result of dust emissions 
into the atmosphere. Wang et al. (2015) analyzed the air 
pollution in the Yangtze River Delta in December 2013 using 
a Principal Component Analysis (PCA). They found that 
the concentration of fine particulate matter increased due to 
the anthropogenic emission of dust from Northwest China. 
This method of research uses a meteorological grid, which 
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needs to be analyzed with an internal source list data. This 
research model is suitable for the pollution source analysis 
of large-scale regions but is ineffective when extrapolat-
ing the source of a pollutant from pollution monitoring  
points.

The Hybrid Single-Particle Lagrangian Integrated Tra-
jectory (HYSPLIT) model can be used to trace the transport 
and diffusion trajectory of pollutants from the monitoring 
points. Arif et al. (2018) used the HYSPLIT4 model to study 
the source of atmospheric pollutants in Patna in 2015. The 
Concentration Weighted Trajectory (CWT) method was also 
used to analyze pollution levels in source regions. Mukherjee 
and Agrawal (2018) studied the sources of PM2.5 pollution 
in Varanasi, India, from 2014 to 2017. They quantified 
the contribution from traffic, road dust, and internal com-
bustion activities, and found that Northwest India was the 
main source area. Liu et al. (2013) used the CWT method 
to track the origin and transport of atmospheric pollutants 
in Lanzhou. Results showed that the HYSPLIT model and 
CWT analysis methods are effective tools when analyzing 
external sources and their corresponding contributions (Sun 
et al. 2015, Perrone et al. 2018). However, it is difficult to 
clarify the temporal and spatial characteristics of air pollution 
processes under the combined action of internal and external 
sources in small-scale regions.

The internal sources of air pollution are studied using set 
pair analysis and the spatial interpolation method used by 
some scholars. Zhou et al. (2016) constructed the set pair 
analysis method for internal and external sources of PM2.5 
and then studied the proportion of internal to external sourc-
es in Dongguan. However, this study did not consider the 
spatial and temporal characteristics of the pollutants. Yang 
et al. (2018) employed a Spatiotemporal Ordinary Kriging 
(STOK) technique and analyzed the daily concentrations of 
PM2.5 in southern Jiangsu province in 2014. Their results 
showed that 29.3% of the area was polluted by PM2.5 in 
2014. Additionally, the number of polluted days varied from 
59 to 164 in different parts of the study region. The spatial 
interpolation method can be used to study the spatial and 
temporal distribution of pollutants, but previous studies 
typically focused on the correlation between a pollutant and 
various meteorological parameters. The correlation analyses 
speculated the causes of regional pollution but failed to 
consider that transport, emissions, and accumulation are 
affected by topography. 

Previous studies failed to capture the complete life cycle 
of a pollutant (Zdun et al. 2016, Zhao et al. 2015, Liu et al. 
2017). To fully understand the emission and transport of pol-
lution, this study needs to track the trajectory of a pollutant, 
locate and quantify its sources, and consider the effects of 

topography. In this paper, the HYSPLIT method is adopted 
to determine the trajectory of an air mass and estimate air 
pollution sources. Then, the PSCF and CWT methods are 
used to quantify and analyze the internal pollution sources. 
Furthermore, spatial interpolation and topographic element 
methods are adopted to determine the temporal and spatial 
distribution characteristics of pollutants. 

MATERIALS AND METHODS

Study Object and Data

Guilin was selected as the research area. Guilin covers an 
area of 27,809 km2 and has a population of over 5 million. 
The research area borders Yongzhou and Shaoyang of Hunan 
Province in the northeast and Liuzhou in the south. All three 
are heavy industrial cities. 

The topographical distribution of the study area is 
presented in Fig. 1. The west, north, and southeast regions 
are mountainous and have higher terrain. The central regions 
have relatively low terrain. There is a long narrow channel 
in the northeast between the Yuechengling and Dupangling-
Haiyangshan Mountain chains. The depth of this channel, 
also known as the “Xiang-Gui Corridor,” ranges from 600 to 
1600 m between the mountain peak and the basin. 

Guilin has lower pollution emissions than surrounding 
cities, but its air quality is significantly worse. The overall 
amount of PM2.5 remains high, especially in Quanzhou 
County, Pingle County, Yongfu County, and downtown  
Guilin.

The research area contains 19 fixed atmospheric envi-
ronmental quality automatic monitoring stations (“fixed 
stations” in short) and 51 mini ones (“mini stations” in short). 
Guilin University of Electronic Technology Yaoshan Station 
(Yaoshan Station) was selected as the background value 
reference station because it was considered to be free from 
the influence of internal sources. Yaoshan Station is 13 km 
from downtown Guilin. Vegetation covers more than 78% 
of this station, and consequently, this station is only weakly 
influenced by the air pollution from downtown.

The following basic data was used to analyze the sourc-
es and spatial distribution of air pollution in the research 
area: hourly average data of the 19 fixed stations in Guilin, 
including wind direction, wind speed, temperature, rainfall, 
barometric pressure, humidity, and PM2.5 concentration; 
Landsat8 satellite 30 m resolution full-band image, adminis-
trative division data, and elevation DEM image data provided 
by Geographic Cloud; and the GDAS data (spatial resolution 
1°×1°) provided by US National Centers for Environmental 
Prediction (Table 1).



1089SPATIAL AND TEMPORAL CHARACTERISTICS OF PM2.5 SOURCES

Nature Environment and Pollution Technology • Vol. 20, No.3, 2021

Study Methods

The internal and external sources and the transport pattern 
of the air pollutants in the research area were analyzed 
using the data described above. First, the trajectory of the 
air mass was simulated for 365 consecutive days using the 
HYSPLIT4 model. Using a spatial clustering method, it 
was found that air pollution was transported from several 
directions. Second, the PSCF method was used to grid the 
potential source areas. Third, the CWT method was employed 
to quantify the grid value of the pollutants in the potential 
source areas. Fourth, four periods with severe pollution were 
selected. The changes of PM2.5 were calculated using the 
spatial interpolation method, which analyzed the spatial and 
temporal distributions of pollutants. Finally, the temporal and 

spatial characteristics of air pollution in the study area under 
the influence of meteorological and topographic changes 
were discussed.

External Source Transmission

The HYSPLIT4 model was used to simulate the trajectory 
of an air mass for continuous periods to determine the di-
rection of air pollutant transmission from external sources. 
The HYSPLIT4 model is a hybrid single-particle orbit model 
developed by the Air Resources Laboratory (ARL) under 
the US National Oceanic and Atmospheric Administration 
(NOAA). This model is used to calculate and analyze the 
trajectories of atmospheric pollutants and diffusion. Trajec-
tories were categorized according to their spatial variation 
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Fig. 1: Topography of the study area and distribution of monitoring stations.

Table 1: Datasheet.

Data category Data contents Data source Time range Resolution

Meteorological data PM2.5 Guilin Environmental 
Monitoring Station

2014.3–2019.6 Day

Meteorological analysis 
data

Wind speed, wind direction, temperature, 
rainfall, barometric pressure, moisture 
content

Guilin Environmental 
Monitoring Station

2017.7–2018.6 Day

Air mass trajectory data GDAS data NCEP 2017.7–2018.6 1°×1°

Geographic data DEM data, Administrative division data China Geographic cloud space website 2017.7–2018.6 30m×30m
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(SPVAR) to obtain the relationship between the total spatial 
variation (TSV) (the sum of SPVAR) and n (the number of 
trajectories). Based on the clustering results, the locations 
of source regions were determined using the PSCF method. 
Then CWT method was used to quantify the pollution weight 
and thus estimate the total pollutants carried out.

	(1)	 Potential Source Contribution Function - PSCF
The PSCF method determines the location of a pollution 
source by setting the atmospheric backward trajectory and 
the meteorological values. The PSCF function is defined as 
the conditional probability that the value of an element corre-
sponding to the monitoring grid, namely PM2.5 concentration, 
exceeds the set threshold when an air mass passing through 
an area reaches the monitoring grid. The PSCF value of the 
i-th grid within the research area is shown in Equation (1):
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of any point within the research area can be obtained by 
Equation (3).

The Kriging interpolation method is employed to reflect 
the accumulation of PM2.5 and the changes in its concentra-
tion in different areas. The landscape’s influence on PM2.5 
transport is also determined. Therefore, the air pollution 
emission is influenced by both the transport of air pollution 
from external sources, and the diffusion of air pollution from 
internal sources.

RESULTS AND DISCUSSION 

Pollution Characteristics

Data was collected from Yaoshan Station, Longyin Station, 
Guilin Environmental Monitoring Station, and No. 8 Middle 
School Station from 2014 to 2019, and then the data was 
analyzed to determine changes in PM2.5 in different regions. 
As shown in Fig. 2, the Yaoshan Station presented lower 
concentrations. The PM2.5 concentrations at this station were 
highest from December to January of the following year and 
lowest from June to July.

The pollution and meteorological conditions differed 
significantly from March to August (Period 1) and September 
to February of the following year (Period 2). Table 2 sum-
marizes the results from Fig. 2. The atmospheric pressure 
is less correlated with the meteorological parameter (PM2.5, 
PM10), and the humidity is directly related to rainfall. The 
corresponding statistical results were not listed in Table 2.

	(1)	 PM2.5 concentration: During Period 1, PM2.5 concen-
trations were greater than 70 μg.m-3 and less than 20 
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μg.m-3, and between these two values accounted for 2%, 
44%, and 54% of the observed PM2.5 concentrations, 
respectively. During Period 2, PM2.5 concentrations 
were greater than 70 μg.m-3 and less than 20 μg/m3, and 
between these two values accounted for 21%, 20%, and 
59%, of the observed PM2.5 concentrations, respectively.

	(2)	 Wind direction: During Period 1, eight wind directions 
had relatively uniform values, with westerly winds and 
northwesterly winds occurring 4% and 5% of the time, 
respectively. During Period 2, northerly and northwest-
erly winds were most frequent and accounted for 43% 
and 25% of all the winds, respectively.

	(3)	 Wind speed: During Period 1, weak winds occurred 
the most frequently. As shown in Table 2, 95% of the 
observed wind was less than 3.5 m.s-1. During Period 2, 
strong winds occurred with greater frequency, and only 
83% of the observed winds were less than 3.5 m.s-1.

(4) Temperature: During Period 1, the temperatures between 
15°C and 30°C accounted for 72% of the observed 
temperature. Temperatures below 15°C and above 30°C 

accounted for 16% and 12%, respectively. During Period 
2, the temperatures between 10°C and 25°C accounted 
for 62% of the observed temperature, while tempera-
tures below 10°C and above 25°C accounted for 25% 
and 13%, respectively.

	(5)	 Rainfall: During Period 1, there was no rainfall 41% 
of the time. Rainfall between 0.1 and 20 mm occurred 
on 56% of the days, and more than 20 mm of rainfall 
occurred on 3% of the days. During Period 2, there was 
no rainfall 79% of the time, rainfall between 0.1 and 20 
mm occurred 21% of the time, and more than 20 mm 
rainfall occurred 0% of the time.

To summarize, Period 1 typically had temperatures rang-
ing from 15°C to 30°C. This period also had weak, uniform 
wind directions, larger amounts of precipitation, bad mete-
orological conditions for pollutant diffusion, and low PM2.5 
concentrations. Period 2 primarily had temperatures between 
10°C and 25°C, strong northeasterly and northerly winds, 
little rainfall, good meteorological conditions for pollutant 
diffusion, and high PM2.5 concentrations. 
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Table 2: Proportion of pollution characteristics in Guilin from July 2014 to June 2019.
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The research area is located in a subtropical zone, with 
little demand for heat in the winter and little seasonal differ-
ence in atmospheric pollution emissions. Period 1 had more 
unfavorable meteorological conditions for pollutant diffusion 
than Period 2, but the air quality was better. This indicates 
that the transport of pollutants from external sources needs 
to be focused on. 

Table 3 showed the variation of PM2.5 concentration 
from December 8 to 19 in 2019. As a background station, 
the variation of PM2.5 concentration at Yaoshan station was 
quite different from the other three stations. In the monitoring 
period, PM2.5 concentration at Yaoshan station increased 
rapidly compared to other stations. After that, PM2.5 con-
centration at the other three stations just began to increase, 
which reflected the spatial differences of stations.

Analysis of External Source Transmission

The HYSPLIT4 model was used to calculate the backward 
air mass trajectory in the research area, while the PSCF 
and CWT methods were used to locate and quantify the 
trajectory sources.

Analysis of trajectory simulation results: The first simula-
tion used the Guilin Environmental Monitoring Station as the 
target. The simulated altitude was 1000 m, which corresponds 
to 700 m in Guilin. The simulation ran from July 1, 2017, 
to June 30, 2018, and 48 hours was used as the backward 
trajectory parameter. The TSV changed over 30%, indicating 
an acceptable allocated clustering number. The 365-day air 
mass trajectory lines were organized into three categories: 
Trajectories ,     and  (Fig. 3).

Trajectory fractal number and spatial distribution are 
shown in Table 4.

The majority of the air masses were transported along 
Trajectory . This trajectory also had the highest PM2.5 
concentrations. The two parameters during Period 2 were 
higher than those in Period 1, which demonstrates better 
atmospheric quality during Period 1 (Table 2).

Trajectory  originated from the south of the research 
area, and 25.62% of the air masses were transported along 
this path. The average concentration of PM2.5 for this 
trajectory was 39.47 μg.m-3, the lowest among the three 
trajectories. Its daily frequency of pollution was 12.63%. 
The trajectory was the largest and originated from the 
northeast. Its average concentration of PM2.5 was 45.94 
μg.m-3, however, the daily frequency of pollution was 
14.41%, which was significantly higher than trajectories 
 and . The trajectory  had a length of 662.9 km and 
originated from the southwest, and had the least quantity 
of air masses (11.29%). Its average concentration of PM2.5 
was 55.27 μg.m-3, however, its daily frequency of pollution 
was only 9.7%.

Yaoshan station was regarded as the background value 
station of external pollution. The clustering results of the air 
masses and PM2.5 concentrations were used to divide pollu-
tion sources into internal and external sources and calculate 
their proportion. The results are shown in Table 5. 

External sources were responsible for more than 76% 
of the pollution, on average. Referring back to Table 4, 
the air quality was good, and the pollution in period 1 was 
generally lower. 

Table 3: PM2.5 concentration at four stations from December 8 to 19 in 2019.

PM2.5(μg.m-³) 8th School station Longyin station Monitor station Yaoshan station

Dec-8 31 34 32 66 

Dec-9 38 41 39 72 

Dec-10 75 75 68 90 

Dec-11 92 93 89 123 

Dec-12 94 101 98 128 

Dec-13 98 103 93 93 

Dec-14 129 136 121 85 

Dec-15 128 134 122 68 

Dec-16 95 98 96 45 

Dec-17 82 88 85 36 

Dec-18 75 78 76 30 

Dec-19 49 65 59 42 
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In the second period, pollution was more severe. Ex-
ternal sources contributed 84.7% of the total pollution, and 
Trajectory  accounted for the highest proportion (95.1%). 
External sources accounted for 83% of the annual pollution, 
of which Trajectory  accounted for the highest proportion 
(94.2%). The contribution of external pollution from the 
“Xiang Gui corridor” (Trajectory) was 83.2%. Trajectory 
 mainly represented pollution from external sources. In  
Trajectory , the contribution of pollution from external 
sources was high, but few air masses were transported along 
this trajectory. Therefore, this trajectory could not represent 
the primary cause of pollution in the study region.

The majority of the air masses traveled along Trajecto-
ry . It is not surprising that this trajectory carried more 
pollutants and had higher PM2.5 concentrations. Trajectory 
also had high concentrations of PM2.5, but fewer air masses 
were transported along this trajectory. The trajectory 1 con-
centration of PM2.5 was close to the value of the target area. 

Trajectories  and  had longer transmission distances 
and low PM2.5 concentrations. These trajectories do not trans-
port enough pollution from external sources and should be 
taken as the main direction for the diffusion of internal source 
pollution in the research area. Additionally, by comparison 
in Table 4, Fig. 3, and Fig. 1, it was found that Trajectory  
was coincident with the “Xiang-Gui Corridor.” It showed that 
this area should be taken as the key point for impact analysis 
of topographical changes.

PSCF result analysis: The daily mean concentration of 
PM2.5 (75 µg.m-3) was used as the threshold. The total resi-
dence time of the trajectory in the grid and the daily average 
value was 48 h. The simulation was run for 365 days, and 10 
days was used as the average residence time in the grid. To 
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Fig. 3: The WPSCF distribution and clustering analysis results of backward trajectory 
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Table 4: Result analysis of trajectory clustering. 

Note: Period 1 is from March to August, and Period 2 is from September to February of the following year 

The majority of the air masses were transported along Trajectory ○2 . This 

trajectory also had the highest PM2.5 concentrations. The two parameters during Period 

2 were higher than those in Period 1, which demonstrates better atmospheric quality 

during Period 1 (Table 2). 

Trajectory ○1  originated from the south of the research area, and 25.62% of the 

air masses were transported along this path. The average concentration of PM2.5 for this 

trajectory was 39.47 μg.m-3, the lowest among the three trajectories. Its daily frequency 

of pollution was 12.63%. The trajectory ○2  was the largest and originated from the 

northeast. Its average concentration of PM2.5 was 45.94 μg.m-3, however, the daily 
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and ○3 . The trajectory ○3  had a length of 662.9 km and originated from the southwest, 

and had the least quantity of air masses (11.29%). Its average concentration of PM2.5 
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1 34 47.9 61 33.21 95 448.5 25.62 39.47 12 12.63
2 125 54.64 104 35.48 229 276.2 63.09 45.94 33 14.41
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Fig. 3: The WPSCF distribution and clustering analysis results of 
backward trajectory

Table 5: Proportion of internal and external pollution sources in different periods.
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Period 2 PM2.5
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external
pollution
sources

Period 2 PM2.5
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internal
pollution
sources

Annual PM2.5

proportion of
external
pollution
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Annual PM2.5

proportion of
internal
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ALL 76.70% 23.30% 84.70% 15.30% 83% 17%

Table 4: Result analysis of trajectory clustering.
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avoid distortion caused by too high PSCF values in grids ni, 
empirical weight function, Wi, was introduced: 
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pollution in the research area. Additionally, by comparison in Table 4, Fig. 3, and Fig. 

1, it was found that Trajectory ○2  was coincident with the “Xiang-Gui Corridor.” It 

showed that this area should be taken as the key point for impact analysis of 

topographical changes. 

PSCF result analysis: The daily mean concentration of PM2.5 (75 µg.m-3) was used as 

the threshold. The total residence time of the trajectory in the grid and the daily average 

value was 48 h. The simulation was run for 365 days, and 10 days was used as the 

average residence time in the grid. To avoid distortion caused by too high PSCF values 

in grids , empirical weight function, , was introduced:  

.                      … (6) 

This formula indicates values of  when  trajectories pass through grids 

at the above time points. The PSCF value is then given by . 

The WPSCF values were distributed as the grid values of Fig. 3. The northeast 

grid had large gray values, which indicated that the air pollution was transported along 

Trajectory ○2 . Therefore, the source was located in the grid in the northeast of 

Trajectory ○2 . Trajectories ○1  and ○3  had smaller grid values outside the research 

area and larger values within the research area, which suggests that the internal 

pollution source was consistent with the results obtained from the trajectory data. 

CWT results analysis: The PSCF method was used to analyze the influence of 

pollution in the research area from a semi-quantitative perspective. The CWT method 

was also used to determine the source of the pollutants. The backward trajectories are 

shown in Fig. 4. The trajectories from the northeast and south are presented as dark 

grids in a consistent direction of the cluster trajectory line. By comparison, areas with 

dark grids could coincide in Fig. 3 and Fig. 4, indicating that the sources were located 

in the northeast and south of the research area. 

.	 … (6)

This formula indicates values of Wi when ni trajectories 
pass through grids i at the above time points. The PSCF value 
is then given by 
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This formula indicates values of  when  trajectories pass through grids 

at the above time points. The PSCF value is then given by . 

The WPSCF values were distributed as the grid values of Fig. 3. The northeast 

grid had large gray values, which indicated that the air pollution was transported along 

Trajectory ○2 . Therefore, the source was located in the grid in the northeast of 

Trajectory ○2 . Trajectories ○1  and ○3  had smaller grid values outside the research 

area and larger values within the research area, which suggests that the internal 

pollution source was consistent with the results obtained from the trajectory data. 

CWT results analysis: The PSCF method was used to analyze the influence of 

pollution in the research area from a semi-quantitative perspective. The CWT method 

was also used to determine the source of the pollutants. The backward trajectories are 

shown in Fig. 4. The trajectories from the northeast and south are presented as dark 

grids in a consistent direction of the cluster trajectory line. By comparison, areas with 

dark grids could coincide in Fig. 3 and Fig. 4, indicating that the sources were located 

in the northeast and south of the research area. 

.

The WPSCF values were distributed as the grid values 
of Fig. 3. The northeast grid had large gray values, which 
indicated that the air pollution was transported along Trajec-
tory . Therefore, the source was located in the grid in the 
northeast of Trajectory . Trajectories  and  had smaller 
grid values outside the research area and larger values within 
the research area, which suggests that the internal pollution 
source was consistent with the results obtained from the 
trajectory data.

CWT results analysis: The PSCF method was used to 
analyze the influence of pollution in the research area from 
a semi-quantitative perspective. The CWT method was also 
used to determine the source of the pollutants. The backward 
trajectories are shown in Fig. 4. The trajectories from the 
northeast and south are presented as dark grids in a consistent 
direction of the cluster trajectory line. By comparison, areas 
with dark grids could coincide in Fig. 3 and Fig. 4, indicating 
that the sources were located in the northeast and south of 
the research area.

Characteristics of external source transmission: Ac-
cording to the WCWT distribution and clustering results 
of backward trajectories, it is known that (1) Trajectory  
accounted for 63.09%, with an average PM2.5 concentration 
of 45.94 μg.m-3. (2) The dark grids were in the northeast, 
implying that the “Xiang-Gui Corridor” is the source of the 
pollutants. (3) Dark grids were also located in the north and 
northeast of the research area, where there is a lot of indus-
tries. In other areas of the research region, the darker grids 
coincided with trajectories  and .

Based on the above analysis, it can be inferred that the air 
pollution in the research area was emitted from a combination 
of external sources (i.e., from the “Xiang-Gui Corridor”) and 
internal sources.

Analysis of Internal Source Pollution

The previous section analyzed external sources of air pollu-
tion and air mass trajectories. It is natural to next consider 
how external and internal sources jointly impact pollution 
using a spatial interpolation method.

As shown in Table 4, PM2.5 concentrations peaked be-
tween September 2017 and February 2018. Four pollution 
events were selected to interpolate the mean PM2.5 concen-
trations from 19 stations using the Kriging interpolation 
method. The four events chosen were from October 31 to 
November 9, December 13 to December 22, December 28 
to January 6, and January 23 to February 1. The results are 
shown in Fig. 5.

PM2.5 concentrations were high in Quanzhou County 
and urban areas. However, the PM2.5 concentration in 
Longsheng County and Gongcheng County was relative-
ly low. This is consistent with Fig. 3 and Fig. 4, which 
showed that the external source of pollution came from 
the northeast. During the four pollution events, Ziyuan 
County, the northeast of Xing’an County, and Guanyang 
in the “Xiang-Gui Corridor” showed relatively low PM2.5  
concentrations. 

The distribution of the blue belt varied with the pollution 
events. Its core area was northeast of Xing’an County, with 
the Yuechengling Mountains to the northwest and the Ocean 
Mountains in the Dupangling Mountains to the southeast. 
The peaks affect the direct transport of the air masses and 
form obvious weakening zones. The Yaoshan Mountains to 
the northeast of the urban areas act as barriers and prevent  
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Note: 0 Quanzhou County, 1 Ziyuan County, 2 Longsheng County, 3 Xing’an County, 4 Lingchuan 

County, 5 Guanyang County, 6 Lingui County, 7 Yongfu County, 8 the urban area, 9 Gongcheng 

County, 10 Yangshuo County, 11 Pingle County, and 12 Lipu County 

Fig. 4: The WCWT distribution and clustering analysis results of backward trajectory 

Characteristics of external source transmission: According to the WCWT 

distribution and clustering results of backward trajectories, it is known that (1) 

Trajectory ○2  accounted for 63.09%, with an average PM2.5 concentration of 45.94 

μg.m-3. (2) The dark grids were in the northeast, implying that the “Xiang-Gui Corridor” 

is the source of the pollutants. (3) Dark grids were also located in the north and northeast 

of the research area, where there is a lot of industries. In other areas of the research 

region, the darker grids coincided with trajectories ○1  and ○3 . 

Based on the above analysis, it can be inferred that the air pollution in the research 

area was emitted from a combination of external sources (i.e., from the “Xiang-Gui 

Corridor”) and internal sources. 

Analysis of Internal Source Pollution 

The previous section analyzed external sources of air pollution and air mass 

trajectories. It is natural to next consider how external and internal sources jointly 

impact pollution using a spatial interpolation method. 

As shown in Table 4, PM2.5 concentrations peaked between September 2017 and 

Note: 0 Quanzhou County, 1 Ziyuan County, 2 Longsheng County, 3 
Xing’an County, 4 Lingchuan County, 5 Guanyang County, 6 Lingui 
County, 7 Yongfu County, 8 the urban area, 9 Gongcheng County, 10 

Yangshuo County, 11 Pingle County, and 12 Lipu County

Fig. 4: The WCWT distribution and clustering analysis results of back-
ward trajectory
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the air masses from directly entering the urban areas, causing 
the four pollution events.

The four periods in Fig. 5 all showed that Quanzhou 
County in the northeast and the urban areas in the center 
contain high concentrations of pollution. This shows 
the effect of the internal and external sources and sug-
gests that while Quanzhou County is affected by the 
northeastern air mass, the internal sources also contrib-
ute toward the accumulation of pollution in the urban  
areas.

CONCLUSIONS

This study focused on the sources and transport of PM2.5 
in the city of Guilin. A combination of PM2.5 daily average 
and meteorological parameters data, and simulations using 
the HYSPLIT model were used to analyze pollutant sources, 
internal source diffusion, and the effect of topography on 
pollutants in the research area. Conclusions could be drawn 
as follows.

	 1.	 From 2014 to 2019, heavy pollution periods in the 
research area occurred from September to February.
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February 2018. Four pollution events were selected to interpolate the mean PM2.5 

concentrations from 19 stations using the Kriging interpolation method. The four events 

chosen were from October 31 to November 9, December 13 to December 22, December 

28 to January 6, and January 23 to February 1. The results are shown in Fig. 5. 

 
                           a                                      b 

 
                   c                                        d 

Note: A: October 31 to November 9, B: December 13 to December 22, C: December 28 to January 

6, D: January 23 to February 1 

Fig. 5: The interpolation results of four pollution processes in Winter in Guilin. 

PM2.5 concentrations were high in Quanzhou County and urban areas. However, 

the PM2.5 concentration in Longsheng County and Gongcheng County was relatively 

low. This is consistent with Fig. 3 and Fig. 4, which showed that the external source of 

pollution came from the northeast. During the four pollution events, Ziyuan County, the 

northeast of Xing’an County, and Guanyang in the “Xiang-Gui Corridor” showed 

Note: A: October 31 to November 9, B: December 13 to December 22, C: December 28 to January 6, D: January 23 to February 1

Fig. 5: The interpolation results of four pollution processes in Winter in Guilin.
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	 2.	 External sources were predominantly from the northeast 
direction, and the trajectory of the pollutants coincided 
with the “Xiang-Gui Corridor.” Potential source areas 
were concentrated in industrial regions in the Hunan 
Province, which lies to the northeast of the research 
area. The internal sources were located to the south and 
southeast. In particular, pollution originated in Yongfu 
County, Lipu County, and Pingle County.

	 3.	 Multiple pollution events showed that the temporal 
and spatial characteristics of pollutant transport were 
affected by special terrain. The “Xiang-Gui Corridor” 
was affected by external sources in the northeast and 
formed a regional center of atmospheric pollution. The 
urban areas, which were under the influence of internal, 
southern, and southeastern sources, formed a second 
regional center.
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