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ABSTRACT

Carbon emissions in agricultural production activities have become an important source of accelerating 
climate warming. At present, low-carbon agriculture is not only an important means to mitigate climate 
warming, but also a necessary process of transformation from traditional agriculture to modern 
agriculture. Therefore, to achieve the sustainable development of agriculture in China’s Western 
Taiwan Straits Economic Zone (WTS Economic Zone), the governments should vigorously promote 
the upgrading and realize the development of low-carbon agriculture. By adopting the latest emission 
coefficients and the ordered weighted averaging (OWA) aggregation operator, this paper selected 
agricultural land use, rice paddies, crop production, livestock manure storage and livestock enteric 
fermentation as the five carbon emission sources, and measured agricultural carbon emissions in the 
WTS Economic Zone from 2010 to 2017. Thus, from the time perspective, the average agricultural 
carbon emissions in the WTS Economic Zone showed a fluctuating downward trend, from 762.64 
× 103 tonnes in 2010 to 710.02 × 103 tonnes in 2017. From the spatial perspective, total agricultural 
carbon emissions among regions are quite different. To further clarify the factors affecting agricultural 
carbon emissions in the WTS Economic Zone, by applying the geographically and temporally weighted 
regression (GTWR) model, this paper selected the research and development intensity, the added value 
of agriculture, the proportion of agricultural labour force, the overall level of urbanization, per capita 
disposable income of rural residents and per capita arable land areas as the influencing factors, and 
then measured the direction and degree of the influences on agricultural carbon emissions in different 
temporal-spatial backgrounds. The results showed that the added value of agriculture, the proportion 
of agricultural labour force and per capita arable land areas had positive influences on agricultural 
carbon emissions, while the research and development intensity, the overall level of urbanization and 
per capita disposable income of rural residents had negative impacts. Although agricultural carbon 
emissions in the WTS Economic Zone have decreased in recent years, further measures can be taken 
to effectively reduce agricultural carbon emissions, and ultimately promote the development of low-
carbon agriculture according to the results of this study.

INTRODUCTION

Since the 21st century, global warming has attracted wide-
spread attention, and carbon emissions are considered to be 
the leading cause of global warming, even threatening the 
survival of mankind. Although carbon emissions are main-
ly caused by the industrial and the service sector, carbon 
emissions from the agricultural sector cannot be underes-
timated. According to the statistics, agricultural activities 
are responsible for approximate 24% of total anthropogenic 
carbon emissions and increasing at a fast speed approximate 
1% per annum (Lamb et al. 2016, Pellerin et al. 2017). That 
is, agriculture has brought about problems such as energy 
consumption and environmental pollution while feeding all 
human beings. As one of the largest agricultural developing 

countries on earth, China has a vast territory and a wide 
range of agricultural regions. Since the adoption of reforms 
and opening-up policy from 1978, China’s agriculture has 
developed rapidly and became an important aspect to pro-
mote social progress and economic development. However, 
carbon emissions from the agricultural sector should not be 
neglected. It should be noted that the annual average carbon 
emissions from agriculture in China increased by 3.15% 
from 2010 to 2017, accounting for about 17% of the total 
carbon emissions (Nayak et al. 2015, Wang et al. 2014). 
Thus, carbon emissions in the agricultural sector in China 
need to be further considered and effectively controlled. To 
reduce agricultural carbon emission, estimating agricultural 
carbon emissions reasonably and accurately, and clarifying 
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the influencing factors of agricultural carbon are of great 
significance for formulating reasonable agricultural emission 
reduction measures.

Fujian is the main part of China’s Western Taiwan Straits 
Economic Zone (WTS Economic Zone). The WTS Econom-
ic Zone also includes southwestern Zhejiang, northeastern 
Guangdong and western Jiangxi. The total land area of the 
WTS Economic Zone is about 296,800 km2, the vast majority 
of which are mountainous and hilly landforms. For instance, 
Fujian has a total land area of 123,800 km2, but the mountain-
ous and hilly areas account for more than 80% of the total. 
Furthermore, per capita land and per capita arable land area 
in Fujian are both less than half of the national per capita. 
Hence, to promote the agricultural economic development, 
a large number of chemical fertilizers, pesticides and plastic 
sheeting were used in the agricultural practice, resulting in 
large amounts of carbon emissions, which seriously restricted 
agricultural sustainable development. Moreover, per capita 
agricultural carbon emissions in the WTS Economic Zone 
were higher than the national per capita agricultural carbon 
emissions as early as 2005. Therefore, in the future, while 
ensuring agricultural production and farmers’ incomes, re-
ducing agricultural carbon emissions is a huge challenge for 
agriculture in the WTS Economic Zone. Based on the above 
background, this study systematically calculated agricultural 
carbon emissions of 20 prefecture-level cities in the WTS 
Economic Zone from 2010 to 2017, analysed their spatial and 
temporal characteristics, measured the influencing factors 
based on geographically and temporally weighted regres-
sion (GTWR), and then put forward the countermeasures 
of agricultural carbon emission reduction combining the 
influencing factors and regional status.

Compared with the existing literature, the innovative 
work of this research mainly manifests in the following three 
aspects. First, based on the data of 20 prefecture-level cities 
in the WTS Economic Zone, this research measured agri-
cultural carbon emissions by adopting the latest emissions 
coefficients released by Intergovernmental Panel on Climate 
Change (IPCC) in 2006 and World Resources Institute 
(WRI) in 2015, to realize the more scientific and accurate 
calculation of agricultural carbon emissions. Second, in the 
comprehensive evaluation of agricultural carbon emissions, 
previous literature often neglected the weight of the specific 
index in different periods and only treated it equally, which 
lead to a large deviation in the final results of the evaluation 
model. Compared with previous researches, this paper used 
the ordered weighted averaging (OWA) aggregation operator 
to determine the weights of years. Thus, the weighted average 
of agricultural carbon emissions combining time weights and 
annual emission quantity was adopted to evaluate agricul-

tural carbon emissions comprehensively. Third, because of 
the huge disparities in production conditions and resource 
endowments, the level of agricultural economic development, 
agricultural structure and agricultural production mode show 
large differences among cities, which lead to significant 
differences in agricultural carbon emissions in both tempo-
ral and spatial distributions. That is, the traditional spatial 
econometric models will not meet the research requirements 
any more. This research employed GTWR to analyse the 
spatial heterogeneity, direction, and degree of the impact of 
influencing factors on agricultural carbon emissions. On a 
whole, this paper remeasured agricultural carbon emissions 
and used OWA aggregation operator to calculate the time 
weights. Then, by using the GTWR model, this paper ana-
lysed the spatiotemporal heterogeneity of the influences of 
the research and development intensity, the added value of 
agriculture, the proportion of agricultural labour force, the 
overall level of urbanization, per capita disposable income 
of rural residents and the per capita arable land area on ag-
ricultural carbon emissions, aiming to provide a reference 
for the governments of the WTS Economic Zone and other 
regions to formulate agricultural emission reduction policies.

PAST STUDIES

Measurement of Carbon Emissions in the Agricultural 
Sector

At present, many existing studies have focused on the eval-
uation of agricultural carbon emissions. Among them, most 
studies used the simple summation method and emission 
coefficients recommended by IPCC Guidelines for National 
Greenhouse Gas Inventories in 2006 to measure carbon emis-
sions in the agricultural sector (Richards et al. 2016, Tubiello 
et al. 2013, Peter et al. 2016). For instance, according to the 
IPCC guidelines, Han et al. (2018) measured the carbon 
emissions in the agricultural sector in China from 1997 to 
2015, Zhang et al. (2019) estimated the agricultural carbon 
emissions in China’s main grain-producing areas during the 
period from 1996 to 2015, and Tian et al. (2016) estimated 
carbon emissions from agricultural production in Hunan 
Province in China during the period from 1995 to 2010. How-
ever, the IPCC guidelines neglected soil emissions during the 
agricultural land-use change in its agricultural inventory (Bell 
et al. 2014). Besides, carbon emission coefficients released 
in 2006 is no longer suitable for the current emission situ-
ation. That is, different methods applied to estimate carbon 
emissions may give different results. Therefore, scholars have 
proposed some novel methods to measure carbon emissions 
in the agricultural sector. Bell et al. (2014) compared the 
new approach adopted by the Scottish Government with 
the IPCC guidelines and national communications. Also, a 
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novel solution was proposed whereby local governments can 
measure their carbon emissions independently (Paweł et al. 
2018). Yue et al. (2017) estimated the carbon footprint of a 
range of 6 livestock and 26 crop products, and significant 
differences between carbon footprints were found across 
different management patterns and farm scales.

Influencing Factors of Carbon Emissions in the 
Agricultural Sector

Carbon emissions in the agricultural sector are influenced 
by many factors from different aspects. For instance, 1 % 
increase in agricultural economic growth will give rise to a 
proportional increase in agricultural carbon dioxide emission 
by 17% (Appiah et al. 2018). The marked changes in the 
structure of different livestock sectors caused the changes 
in carbon emission inventories and their spatial distribution 
(Wei et al. 2017). Besides, agricultural technology (Ismael 
et al. 2018), land use area per capita (Zhao et al. 2018), 
agricultural land utilization (Lu et al. 2018), conversion of 
agricultural fields (Sarauer & Coleman 2018, West & Mar-
land 2003), agricultural income (Zafeiriou et al. 2018) and 
agricultural populations (Cui et al. 2018) all affect agricul-
tural carbon emissions.

There are abundant research results on the methods of 
investigating the relationship between agricultural carbon 
emissions and their influencing factors. The autoregressive 
distributed lag model (Zafeiriou et al. 2018), the multivar-
iate model (Tian et al. 2016, Cui et al. 2018), the Granger 
causality test (Khan et al. 2018, Zaman et al. 2012) and the 
vector error correction models (Mourao & Martinho 2017), 
the logarithmic mean Divisia index (Xiong et al. 2016a) 
and the variance decomposition (Ismael et al. 2018) were 
applied to explore the relationship between agricultural 
carbon emissions and their influencing factors. In addition, 
other scholars have applied other novel methods such as the 
denitrification-decomposition model (Yadav & Wang 2017) 
and spatial econometric model (Ye et al. 2016) were adopt-
ed to explore the relationship between agricultural carbon 
emissions and their influencing factors.

MATERIALS AND METHODS

Study Area

There are mainly 20 prefecture-level cities in the WTS 
Economic Zone, including 9 in Fujian, 3 in Zhejiang, 4 in 
Jiangxi and 4 in Guangdong. On the whole, the WTS Eco-
nomic Zone is located approximately between the longitude 
114°E and 121°E, and between the latitude 22°N and 30°N. 
Also, the WTS Economic Zone, which borders the Yangtze 
River Delta in the north and the Pearl River Delta in the 

south, is an important part of China’s coastal economic zone 
and plays an important role in the layout of China’s regional 
economic development. According to the raw data released 
in the provincial and municipal statistical yearbooks, the 
added value of agriculture has reached 421.62 billion Chinese 
Yuan in 2017, accounting for a proportion of 7.83% of the 
regional gross product. Additionally, per capita disposable 
income of rural residents has reached 11,686 Chinese Yuan, 
which has been increasing every year since 1990. However, 
the proportion of workers participated in the agricultural 
sector in the labour force has reached 27.98% by 2017. The 
increased agricultural growth often comes at the expense of 
environmental interests in China (Han et al. 2018). That is, 
at present, in the process of agricultural production in the 
WTS Economic Zone, which is dominated by pesticides, 
fertilizers and plastic film, not only high energy consumption 
and low efficiency are common, but also accompanied by 
a large amount of carbon emissions, affecting the sustain-
able development of agriculture. However, there are few 
researches on carbon emissions in the agricultural sector in 
the WTS Economic Zone, which leads to some shortcomings 
in the formulation of agricultural policies to control carbon 
emissions. The geographical location of the WTS Economic 
Zone is shown in Fig. 1.

Selection of Measurement Indicators

Because the sources of agricultural carbon emissions are 
complex and diverse (Zhang et al. 2019), it is necessary to 
distinguish the sources effectively when measuring carbon 
emissions. Carbon emissions from the agricultural sector 
mainly come from greenhouse gas emissions. That means 
the measurement of carbon emissions in agriculture is trans-
formed into the measurement of greenhouse gas emissions. 
Then, through conversion coefficients between greenhouse 
gases and standard carbon, the agricultural carbon emission 
can be finally obtained. On the whole, the greenhouse gas 
emissions mainly consist of three types at present: carbon 
dioxide (CO2), methane (CH4) and nitrous oxide (N2O). 
According to the data released in the IPCC Fifth Assess-
ment Report in 2006, the greenhouse effect caused by 1 
tonne of CO2 is approximately equivalent to that produced 
by 0.2727 tonnes of standard carbon. Similarly, 1 tonne of 
CH4 approximately emits 6.8182 tonnes of standard carbon 
and 1 tonne of N2O approximately emits 81.2727 tonnes of 
standard carbon.

In the agriculture, there are four major sources of carbon 
emissions which can also be considered as the source of 
greenhouse gas emissions: rice paddies and crop produc-
tion, agricultural land use, livestock breeding and energy 
consumption in agricultural production, respectively (Cui 
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Table 1: Carbon emission sources and coefficients in agricultural sector.

Sources Detailed sources (units)
Greenhouse Gases

References
CO2 CH4 N2O

agricultural land use pesticide (kg/kg) 18.09 n/a n/a IPCC

chemical fertilizer (kg/kg) 3.28 n/a n/a IPCC

plastic sheeting (kg/kg) 19.00 n/a n/a IPCC

diesel (kg/kg) 3.17 n/a n/a IPCC

tillage (kg/km2) 1146.31 n/a n/a IPCC

irrigation (kg/ha) 977.19 n/a n/a IPCC

rice paddies early rice (kg/ha) n/a 77.39 n/a IPCC

late rice (kg/ha) n/a 525.95 n/a IPCC

in-season rice (kg/ha) n/a 434.66 n/a IPCC

crop production paddy rice (kg/ha) n/a n/a 0.24 IPCC

winter wheat (kg/ha) n/a n/a 2.05 IPCC

soybean (kg/ha) n/a n/a 0.77 IPCC

vegetable (kg/ha) n/a n/a 4.21 IPCC

maize (kg/ha) n/a n/a 2.53 IPCC

other dry crops (kg/ha) n/a n/a 0.95 IPCC

manure storage (livestock) dairy (kg/head/year) n/a 8.33 2.07 WRI

non-dairy (kg/head/year) n/a 3.31 0.85 WRI

goat (kg/head/year) n/a 0.28 0.11 WRI

pig (kg/head/year) n/a 5.08 0.18 WRI

poultry (kg/head/year) n/a 0.02 0.01 WRI

rabbit (kg/head/year) n/a 0.08 0.02 IPCC

enteric fermentation (livestock) dairy (kg/head/year) n/a 89.3 n/a WRI

non-dairy (kg/head/year) n/a 67.9 n/a WRI

goat (kg/head/year) n/a 9.4 n/a WRI

pig (kg/head/year) n/a 1 n/a WRI

poultry (kg/head/year) n/a n/a n/a WRI

rabbit (kg/head/year) n/a 0.25 n/a IPCC

Note: IPCC (Eggleston et al. 2006); WRI (Jiang et al. 2015).
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et al. 2018). However, the first three sources of carbon 
emissions contribute most to agricultural carbon emissions 
(Johnson et al.2007). Thus, for the convenience of calcula-
tion, the carbon emissions from energy consumption in the 
agricultural sector are negligible. Therefore, agricultural 
carbon emissions mainly consist of three parts: (1) the CO2 
emissions caused by the agricultural land use; (2) the CH4 
emissions produced from rice paddies and livestock breeding; 
(3) the N2O emissions triggered by the crop production and 
the livestock breeding. Additionally, animals which are not 
raised and crops which are not planted are negligible. All 
agricultural carbon emission sources and their corresponding 
coefficients in the WTS Economic Zone are listed in Table 1.

Based on the existing researches about the carbon emis-
sion equation (Xiong et al. 2016a), the total carbon emis-
sions equation in the agricultural sector can be constructed 
as follows:

	

 

 

Note: IPCC (Eggleston et al. 2006); WRI (Jiang et al. 2015). 
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to convert CO2, CH4 and N2O to the standard carbon based 
on the conversion coefficient mentioned above.

Selection of Influencing Factors

Research and development intensity (RDI): The invest-
ment of research and development (R&D) contributes to the 
progress and development of the nation’s science and tech-
nology. Besides, the measurement of R&D investment largely 
depends on the intensity of R&D, that is, the proportion of 
R&D to GDP. Thus, to control agricultural carbon emissions, 
it is necessary and effective for the government and relevant 
departments to increase the R&D investment intensity (Han 
et al. 2018, Xiong et al. 2016b). Furthermore, the R&D in-
vestment can effectively promote the progress of agricultural 
technology with more environmentally friendly, enhance the 
low-carbon scientific and technological content of agricultural 
products and services, and then reduce the resulting carbon 
emissions in the agricultural sector. Therefore, the intensity 
of research and development is applied and noted as RDI to 
explorer the influence of science and technology on agricultur-
al carbon emissions. However, the agricultural technological 
investment may take some time to have a significant impact 
on agricultural carbon emissions, that is, there is a certain 
time lag effect. Therefore, this paper calculates the influence 
of RDI, 1-order-lag RDI and 2-order-lag RDI on agricultural 

carbon emissions, to determine the optimal time lag for the 
influence of RDI.

Proportion of agricultural labour force (ALF): As a so-
cial development factor, the labour force in the agricultural 
sector can impact carbon emissions from the crop industry, 
so as to the agricultural carbon emissions. It is worth noting 
that with the increase of urbanization, ALF continues to 
decline, and has reached a very low level, such as 2% in 
Jordan in 2014 (Ismael et al. 2018), 1.4% in the UK in 2010 
and less than 1% in 2016 (Zafeiriou et al. 2018). Because 
of the absolute demand for natural resources and energies 
from mankind, there is a strong positive correlation between 
agricultural population and carbon emissions. Furthermore, 
the reduction of agricultural labour force shows that the 
demand for the labour force in agriculture is continually 
decreasing. Thus, agriculture has begun to improve the 
production technology through technological progress and 
other means. Therefore, the surplus labour has migrated 
from the farmland to other non-agricultural sectors of the 
national economy.

Added value of agriculture (AVA): The gross output values 
of farming, forestry, animal husbandry and fishery production 
were used to measure the agricultural economic growth which 
was generally proven to promote carbon emissions. Also, 
the standardized output value of farming, the agricultural 
added value growth (Xiong et al. 2016b) and per capita gross 
domestic product (Appiah et al. 2018) were also applied as a 
proxy of agricultural economic growth. The use of the added 
value of agriculture as economic growth reflects not only the 
volume of agricultural economic growth but also the speed of 
agricultural economic development. That is, the added value 
of agriculture is a combination of absolute growth and relative 
growth. Therefore, as an important indicator of agricultural 
economic growth, the added value of agriculture is applied and 
noted as AVA to explorer the impact of agricultural economic 
growth on agricultural carbon emissions.

Overall level of urbanization (OLU): There exists a 
correlation between the urbanization and the proportion of 
agricultural labour force. That is, as progress increases in ur-
banization, a large number of agricultural labour force migrate 
from agriculture to non-agricultural industries. Therefore, the 
improvement of urbanization level also means that the quality 
and agricultural technological skills of agricultural labours 
continuously improve. Thus, the overall level of urbanization 
noted as OLU reduces the carbon emissions in the agricultural 
sector. The urbanization is also increasing land competition 
between agricultural production and urban expansion. How-
ever, Hossain showed that there did not exist a long-term 
relationship between the level of urbanization and the carbon 
dioxide emission (Hossain 2011). In a word, most researchers 
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approved that the level of urbanization has a decisive influence 
on agricultural carbon emissions.

Per capita disposable income of rural residents (DIR): 
There exists bidirectional causality between real income and 
carbon emissions. As a proxy of economic growth, per capita 
disposable income of rural residents, marked as DIR, reflects, 
in particular, the extent of agricultural economic development. 
The success of economic development in China comes at the 
cost of over-exploitation of national resources and a tremen-
dous influence on the environment (Tao et al. 2017). Therefore, 
the mode for giving up the income growth of rural residents 
to promote carbon emissions reduction in the agricultural 
sector will not be implemented in China. That is to say, at 
this stage, the increase of DIR may lead to an increase in 
carbon emissions. It should be noted that with the increasing 
demand for green products, farmers with higher incomes can 
also promote the consumption of low-carbon products through 
their buying preferences.

Per capita arable land area (ALA): Agricultural land use 
and land-use change are two of the important factors impact-
ing agricultural carbon emissions. However, it is difficult to 
estimate the change in agricultural land use in reality. Thus, 
agricultural land use, especially the per capita arable land 
area noted as ALA, has become an important factor related 
to agricultural carbon emissions to be considered. Because 
agricultural land use is an important source of agricultural 
carbon emissions, the reduction of the arable land area means 
that the agricultural land that can generate carbon emissions 
is also decreasing. In addition, the change of per capita arable 
land area will also affect the use of chemical fertilizers, pesti-
cides and plastic sheeting, and then affect agricultural carbon 
emissions. Furthermore, because of the soil erosion and the 
like (Cui et al. 2018), and the contaminated farmland, carbon 
emissions from agricultural land use has been changed.

Research Methodologies

Ordered weighted averaging aggregation operator: The 
thought of OWA aggregation operator is to determine the 
corresponding weights according to the decision data itself. 
Since the introduction of OWA aggregation operator by Yager 
(1988), researchers have considered and improved the fairness 
of this weighting method. In this paper, an improved meth-
od based on OWA aggregation operator weighting thought 
proposed by Xu (2005) was applied to determine the time 
weights, i.e., a smooth and continuous normal distribution 
density function method. Thus, the problem of weighting 
specific indicators in different periods, which was ignored in 
the previous researches of the comprehensive evaluation of 
agricultural carbon emissions, is solved. When considering 
the time weights, the fairness of OWA aggregation operator 

is more scientific and reasonable than that of the traditional 
arithmetic average. The specific steps of OWA aggregation 
operator can be listed as follows:

	(1)	 Assuming that there are m regions and n years; in 
addition, Eij denotes the total carbon emissions in the 
agricultural sector in the specific region i in the specific 
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Geographical and temporal weighted regression: The 
application of traditional linear regression model has a large 
deviation due to the neglect of spatial factors. Thus, the 
application of a novel method, the geographically weighted 
regression model (GWR), solves some of the above problems 
in the previous researches (Brunsdon et al. 1996). Based on 
adding the geographical location into the regression coeffi-
cient, and the estimation of regression coefficient functions, 
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the GWR model can overcome the spatial heterogeneity 
among geographic units and break through the limitation 
of the constant coefficient model. However, GWR can only 
regress the cross-sectional data. That is, GWR model only 
embeds geographic location parameters into the model, and 
then forms a model with spatial characteristics, without con-
sidering the temporal characteristics of the actual problem (Li 
et al. 2019). Thus, as an extension of the weighted regression 
model of spatial geography, GTWR, is used to analyse the 
spatial and temporal chrematistics by incorporating the tem-
poral and spatial characteristics of data into the regression 
model for analysis. GTWR remains the advantage of a high 
fitting degree of a local regression model compared with 
GWR. The general model of GTWR can be constructed as 
follows (Li et al. 2019):
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Where, yi represents the observations of the total carbon 
emissions in the agricultural sector, and xik is the influencing 
factors at the specific observation point (ui,vi,ti). b0 is the 
coefficient of the constant. (ui,vi,ti) represents the longitude 
and latitude coordinates ui and vi, and the observation time 
point ti of the observation point. bk(ui,vi,ti) denotes the un-
known parameter at the specific observation point (ui,vi,ti), 
and is the arbitrary function of (ui,vi,ti). In addition, ei is an 
independent and identically distributed error term and is 
usually assumed to obey the N(0,s2) distribution. Besides, 
the parameters are estimated by the local weighted least 
squares method. That is, for a given specific observation 
point, the observation values near the point are given larger 
weights, while the observation values far from the point are 
given smaller weights. By minimizing the weighted sum of 
squares between the observed values and the fitted values, 
the estimated values of the parameters can be obtained.

RESULTS

Data Sources

Various sources of carbon emissions in the agricultural sector 
are chosen to measure total carbon emissions. Therefore, the 
carbon emissions from agricultural land use, rice and crop 
growth process and livestock breeding, as well as their carbon 
emission coefficients are selected in this study. Among them, 
the emission coefficients mainly come from the coefficients 
released by WRI in 2015 and IPCC in 2006. Furthermore, 
the raw data on the amount of carbon emission sources in 
the agricultural sector of the provinces from 2010 to 2017 
comes from the provincial statistical yearbooks and prefec-
tural-level cities statistical yearbooks. This study does not 

deal with the original data in any other way. In the end, we 
obtain the raw data covering 20 prefectural-level cities for 
8 years, totalling 160 samples.

Measurement of Agricultural Carbon Emissions

Time variation of agricultural carbon emissions: The 
total agricultural carbon emissions calculated based on the 
carbon emission coefficients are shown in Table 2. As seen 
in Table 2, the average agricultural carbon emissions in the 
WTS Economic Zone showed a fluctuating downward trend, 
from 762.64 × 103 tonnes in 2010 to 710.02 × 103 tonnes 
in 2017, with an average annual growth rate of -0.86%. In 
addition, the time-variation process of average agricultural 
carbon emissions showed four-stage characteristics of “rise-
fall-rise-fall”. More concretely, agricultural carbon emissions 
reached the maximum value of 774.98 × 103 tonnes in 2013 
and reached the minimum value of 710.02 × 103 tonnes in 
2017. Furthermore, agricultural carbon emissions in which 
has always been in a downward trend from 2010 to 2017 
occur in Putian, Wenzhou and Lishui. Agricultural carbon 
emissions in Fu’zhou and Ganzhou from 2010 to 2017 
present a pattern of “N” shape. By contrast, that of in Fu-
zhou, Zhangzhou, Nanping, Longyan, Ningde, Quzhou and 
Shangrao from 2010 to 2017 show an evolutionary trend of 
the inverse “V” shape, while that of in Xiamen and Quanzhou 
is “V” shape. In addition, agricultural carbon emissions in 
Shantou, Jieyang, Chaozhou and Meizhou have a changing 
pattern of “M” shape, while that of in Sanming and Yingtan 
have fluctuated. Although some progress has been made 
during the period in agricultural sustainable development 
in Fujian, it is still an arduous task at present.

Spatial variation of agricultural carbon emissions: To 
fully consider the time dimension and ensure that the carbon 
emissions of different cities can be comprehensively com-
pared, average agricultural carbon emissions calculated based 
on OWA aggregation operator are listed in the last column 
of Table 2. That is, these values are calculated by weighting 
the year first, and then multiplying the carbon emissions of 
each year and then summing them up. The weights of each 
year calculated based on OWA aggregation operator are 
listed in the last row of Table 2. As seen in Table 2, the top 
five prefecture-level cities of agricultural carbon emissions 
are Ganzhou, Shangrao, Fu’zhou, Zhangzhou and Nanping, 
accounting for 51.38% of the total agricultural carbon emis-
sions in the WTS Economic Zone. By contrast, the last five 
prefecture-level cities of agricultural carbon emissions are 
Xiamen, Chaozhou, Putian, Shantou and Meizhou, account-
ing for only 8.51% of total agricultural carbon emissions in 
the WTS Economic Zone. Among them, the average agricul-
tural carbon emission in Ganzhou is 2122.42 × 103 tonnes, 
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which is equivalent to 28.28 times of that of in Xiamen, 
75.04 × 103 tonnes, which is the smallest. It can be found 
that the total agricultural carbon emissions among regions 
are quite different.

Time variation of the structure of agricultural carbon 
emission sources: The compositions and sources of agri-
cultural carbon emission vary from year to year, as shown 
in Table 3. Among them, agricultural carbon emissions from 

rice paddies accounted for the largest proportion, account-
ing for 42.82% in 2013. By contrast, agricultural carbon 
emissions from crop production accounted for the smallest 
proportion, accounting for only 3.73% in 2012. Besides, 
from the perspective of greenhouse gases, the proportion of 
CH4 emitted by the five main carbon emission sources was 
the highest, which can up to 58.94%, and the proportion of 
N2O emitted was the smallest, which can down to 9.32%.

Table 2: Average agricultural carbon emissions (AACE) in WTS Economic Zone (units: 103 tonnes carbon).

Cities 2010 2011 2012 2013 2014 2015 2016 2017 AACE

Chaozhou 258.85 287.51 278.66 264.75 259.94 259.62 259.67 247.07 265.91

Fu’zhou 1497.02 1506.76 1508.06 1492.76 1489.49 1477.22 1502.76 1512.78 1495.55

Fuzhou 748.13 761.97 754.29 748.75 741.54 728.36 658.57 645.79 734.16

Ganzhou 2074.76 2089.12 2099.13 2129.65 2139.46 2168.17 2144.4 2157.54 2122.42

Jieyang 409.29 410.64 408.86 402.16 404.92 403.14 398.48 384.35 405.13

Lishui 375.31 368.07 365.53 364 345.4 337.62 318.43 310.56 352.43

Longyan 844.88 847.72 844.65 844.59 835.18 769.2 716.58 715.98 813.5

Meizhou 337.62 340.1 347.05 346.25 343.05 350.68 348.22 336.39 344.4

Nanping 1053.41 1065.75 1065.76 1299.81 1088.8 1086.94 1145.93 933.96 1099.56

Ningde 513.09 515.18 511.42 505.39 497.19 489.83 478.49 474.64 500.88

Putian 328.08 322.95 311.75 299.66 278.62 278.43 267.48 228.45 296.14

Quanzhou 705.85 691.92 677.6 663.43 640.98 633.5 628.09 655.61 662.42

Quzhou 552.27 574.68 578.98 553.93 479.65 443.69 422.27 414.03 509.81

Sanming 914.94 921.81 907.74 906.69 901.55 903.8 770.21 779.9 891.01

Shangrao 1847.69 1870.82 1880.33 1913.7 1914.66 1919.65 1902.57 1890.62 1892.82

Shantou 279.48 304.96 309.37 307.77 311.55 312.75 312.92 288.5 304.85

Wenzhou 857.63 841.71 837.06 812.57 777.19 760.31 750.61 723.04 802.49

Xiamen 87.28 86.33 86.19 82.6 66 62.09 61.48 63.72 75.04

Yingtan 391.39 388.04 390.67 395.45 394.15 396.71 397.2 393.49 393.35

Zhangzhou 1175.91 1181.57 1181.36 1165.64 1155.07 1143.35 1131.38 1043.93 1159.13

Average 762.64 768.88 767.22 774.98 753.22 746.25 730.79 710.02 n/a

Weights (%) 15.67 12.76 13.60 9.56 17.97 17.38 10.75 2.31 n/a

Table 3: The proportion of sources of agricultural carbon emissions in WTS Economic Zone (units: %).

Sources 2010 2011 2012 2013 2014 2015 2016 2017

Agricultural land use 31.69 32.08 32.26 31.92 33.03 33.51 34.11 33.88

Rice paddies 42.75 42.14 41.92 42.82 41.90 42.10 41.72 42.77

Crop production 3.76 3.79 3.73 3.77 3.93 4.02 3.92 3.80

Livestock: manure storage 13.04 13.39 13.50 13.04 12.61 11.97 12.22 11.84

Livestock: enteric fermentation 8.76 8.60 8.59 8.45 8.53 8.40 8.03 7.71

CO2 31.69 32.08 32.26 31.92 33.03 33.51 34.11 33.88

CH4 58.94 58.31 58.15 58.61 57.44 57.02 56.41 56.80

N2O 9.37 9.61 9.59 9.47 9.53 9.47 9.48 9.32
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Influencing Factors on Agricultural Carbon Emissions

The descriptive statistics of all selected variables used in 
GTWR model, including total carbon emissions and its 
influencing factors, are shown in Table 4. The standard 
deviations of some variables reflect that there exist great 
differences among the cities, that is, the deviation trend is no-
ticeable. For instance, the maximum of ALF is 178.23 times 
of the minimum, while that of AVA, AACE and RDI reach 
35.63, 35.27 and 33.31 times of the minimum respectively. 
Besides, the concentration trends of DIR, ALF and OLU 
are more obvious than the dispersion trends. Therefore, the 
maximum values of DIR and OLU are only 6.02 and 2.40 
times of the minimum respectively. It should be noted that to 
overcome the defect of heteroskedasticity, the original data 
used in GTWR are applied in the logarithmic form without 
changing the nature and correlation of original data. Thus, the 
coefficients of the GTWR model in this paper measure the 
elasticity of dependent variables to the independent variable, 
that is, the percentage of the dependent variable change when 
the independent variable changes by 1%.

This paper applied the GTWR model to measure the 
direction and degree of factors’ influences on agricultural 
carbon emissions. The descriptive statistics of regression 
coefficients in the GTWR model are shown in Table 5. As 
seen in Table 5, the regression coefficient estimation of 
GTWR model calculated by ArcGIS 10.4.1 shows great 

heterogeneity of total carbon emissions in the agricultural 
sector among cities in geographically and temporal attrib-
utes. Thus, the GTWR model is suitable for estimating the 
regression coefficients because of the obvious spatial and 
temporal non-stationary characteristics of agricultural carbon 
emissions. Besides, the goodness of fit of the GTWR model 
is also much better than other models, such as the GWR 
model and the Ordinary Least Square (OLS). For instance, 
the value of R2 of the GTWR model is as high as 0.9957 
which is very close to 1, while that of the GWR model and 
the OLS model only reach 0.9929 and 0.8303 respectively. 
The estimated regression coefficients reflect the influencing 
direction and degree of each selected factor on agricultural 
carbon emissions in different cities in each year. Furthermore, 
the optimal bandwidth used in GTWR model is determined 
based on the spatial-temporal weight function of the Gauss 
function method and the cross-validation. The geographical 
distribution of regression coefficients of each influencing fac-
tor in 2010, 2014 and 2017 are shown in Fig. 2 respectively.

The influence of RDI on agricultural carbon emissions: 
Considering that the influence of RDI on agricultural carbon 
emissions may have a time lag period, this paper examines 
the effects of RDI, 1-order-lag RDI and 2-order-lag RDI 
on agricultural carbon emissions. The results show that the 
regression coefficients of RDI and 2-order-lag RDI are not 
statistically significant, and the regression coefficients of 
1-order-leg RDI are significantly negative at the level of 1%. 

Table 4: The descriptive statistics of raw data of variables used in the GTWR model.

Variables Units Mean SD Minimum Q1 Median Q3 Maximum

AACE 103 tonnes 751.75 544.56 61.48 345.61 603.53 930.92 2168.17

RDI % 1.06 0.91 0.13 0.59 0.76 1.14 4.33

ALF % 30.31 11.21 0.26 27.08 32.92 38.37 46.34

AVA 108 CNY 112.73 63.23 9.69 70.34 101.60 144.23 345.22

OLU % 55.96 11.09 37.20 48.45 53.55 63.15 89.10

DIR 103 CNY 11.60 3.85 4.18 8.84 11.38 13.88 25.15

ALA ha / person 0.04 0.02 0.01 0.03 0.04 0.06 0.09

Table 5: The descriptive statistics of the estimated results of regression coefficients in the GTWR model.

Variables Mean Minimum Q1 Median Q3 Maximum SE t p-value

Intercept 6.1626 -37.0190 -0.5719 7.1805 12.8774 43.8987 179.024 5.508 0.000

LNRDI -0.4353 -4.7932 -0.8848 -0.2211 -0.1746 4.2874 16.208 -4.297 0.000

LNALF 0.0241 -0.5754 -0.0467 0.0115 0.0791 0.6831 2.528 1.765 0.081

LNAVA 0.7532 -0.0293 0.2959 0.7100 1.1292 2.0646 6.608 18.249 0.000

LNOLU -0.6123 -2.7852 -0.9478 -0.3873 -0.1537 0.9413 9.136 -10.728 0.000

LNDIR -0.4224 -5.5209 -1.3634 -0.5564 0.7064 5.4261 22.112 -3.057 0.003

LNALA 0.2268 -2.5617 -0.2484 0.0888 0.9536 3.0768 13.296 2.728 0.007
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Fig. 2: Spatial distribution of regression coefficients in 2010, 2014 and 2017. 
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Therefore, the RDI selected in this paper is the 1-order-lag 
RDI. As shown in Table 5, the impact of 1-order-lag RDI 
on agricultural carbon emissions is mainly negative, which 
is in good agreement with the expectations. That is, when 
RDI increase by 1%, the agricultural carbon emissions will 
decrease by 0.4353% on average in the opposite direction. 
Specifically, as shown in Fig. 2(a). from the time perspective, 
in 2010, the RDI of Fu’zhou, Nanping, Sanming, Shangrao 
and Yingtan promoted agricultural carbon emissions while 
that of only in Jieyang, Putian and Yingtan promoted agri-
cultural carbon emissions in 2017. In addition, RDI in other 
cities in each year has effectively restrained agricultural 
carbon emissions. Besides, from the spatial perspective, in 
2010, RDI of Ganzhou and Chaozhou had great influences 
on agricultural carbon emissions while that of in 2014 were 
Quzhou and Ganzhou, and that of in 2017 were Ganzhou 
and Shantou. The southern cities are relatively advanced in 
agricultural science and technology compared with those in 
the northern cities. Thus, governments and enterprises can 
invest heavily in research and development, and effectively 
control agricultural carbon emissions through technological 
improvements.

The influence of ALF on agricultural carbon emissions: 
The results in Table 5 and Fig. 2(b) showed that ALF had a 
significant positive impact on agricultural carbon emissions 
at a significant level of 10%. That is, when ALF increase 
by 1%, agricultural carbon emissions will increase by 
0.0241% on average in the same direction. In 2010, ALF in 
all 20 prefecture-level cities promoted agricultural carbon 
emissions. However, in 2014 and 2017, ALF in some cities, 
such as Xiamen, Quzhou, Fuzhou and Quanzhou, reduced 
agricultural carbon emissions. One possible explanation is 
that in the process of the rapid development of agricultural 
modernization, these above cities have trained and introduced 
agricultural technicians and technological professionals, im-
proved the level of agricultural science and technology, and 
thus reduced agricultural carbon emissions. From the spatial 
perspective, ALF in cities such as Fu’zhou, Zhangzhou, 
Yingtan and Jieyang accounts for about 40% of the total 
labour force, which has a great impact on agricultural carbon 
emissions. By contrast, ALF in Xiamen, Fuzhou and Quan-
zhou only accounts for about 20% of the total labour force, 
which has little impact on agricultural carbon emissions. The 
conclusion may be mainly due to the different orientation and 
role of different cities in regional development. For instance, 
some cities mainly develop agriculture to provide agricultural 
products and services for the surrounding cities while others 
develop services and manufacturing. 

The influence of AVA on agricultural carbon emissions: 
As seen in Table 5, AVA mainly promotes the average in-

creases of carbon emissions in the agricultural sector by 
0.7532% when AVA increases by 1%. As shown in Fig. 2(c), 
the positive effect of AVA on agricultural carbon emissions in 
most cities is obvious. One explanation might simply be that 
the success of the rapid growth of agriculture at the cost of 
over-exploitation of natural resources and tremendous impact 
on the environment, especially in Longyan, Quanzhou and 
Ningde. However, the negative correlation between AVA and 
total agricultural carbon emissions will become the trend in 
the future. For instance, AVA showed a negative influence 
on agricultural carbon emissions in Nanping in 2017. As the 
main grain producing area in Fujian, Nanping realizes the 
organic production of agricultural products, the effective 
control of land use, and the wide application of the Internet 
of Things in agriculture. Therefore, it is an effective way for 
governments and enterprises to increase the added value of 
agriculture to achieve agricultural sustainable development 
through the improvement and promotion of agricultural 
technologies.

The influence of OLU on agricultural carbon emissions: 
The urbanization level is often accompanied by a large 
number of infrastructure investment, the industrial transfer 
and agglomeration, and the population migration which has 
an impact on energy consumption and agricultural carbon 
emissions. As shown in Table 5, the negative impact of OLU 
on agricultural carbon emissions is significant in most of the 
cities. That is, when OLU increase by 1%, the agricultural 
carbon emissions will decrease by 0.6123% on average 
in the opposite direction. The positive influence of OLU 
on agricultural carbon emissions only existed in Fu’zhou, 
Ganzhou and Sanming in 2010, narrowing to 2 cities in-
cluding Nanping and Sanming in 2014 and narrowing to 1 
city only including Fu’zhou in 2017. As a whole, the overall 
level of urbanization of southern cities is higher than that of 
northern cities, that is, the industrial structure, the environ-
mental regulation and the technical level of southern cities 
of the WTS Economic Zone are better than that of northern 
cities. Therefore, northern cities should pay more attention 
to coordinating the relationship between urbanization and 
agricultural modernization, then realize the synchronous 
development of agricultural modernization and the transfor-
mation of agricultural production organizations.

The influence of DIR on agricultural carbon emissions: 
On the whole, as shown in Table 5 and Fig. 2(e), DIR has a 
negative influence on agricultural carbon emissions. When 
DIR changes by 1%, the average change of agricultural 
carbon emissions is 0.4224% in the opposite direction. In 
2010, DIR in 6 cities curbed agricultural carbon emissions, 
expanding to 12 cities in 2014 and 15 cities in 2017. From 
the perspective of spatial distribution, the regression coeffi-
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cients of DIR in Putian, Quanzhou, Wenzhou and Xiamen 
were all negative in 2010, 2014 and 2017 while that of in 
Ganzhou and Longyan were positive. However, other cities 
have experienced a transformation process of positive-nega-
tive influence. The increase of DIR could have promoted the 
choice of green agricultural products and prompted agricul-
tural producers to reduce chemical fertilizers and pesticides 
to realize sustainable development. Therefore, the rural 
residents’ rational consumption concept including moderate 
consumption and green consumption needs to be guided, 
cultivated and strengthened by governments and enterprises.

The influence of ALA on agricultural carbon emissions: 
Combining the results of Table 5 and Fig. 2(f), ALA mainly 
promotes the average increases of carbon emissions in the 
agricultural sector by 0.2268% when ALA increases by 
1%. From the original data, although the per capita arable 
land area of cities has little difference, the impact of ALA 
on agricultural carbon emissions has obvious spatial and 
temporal differences. On the whole, the positive influence 
of ALA on agricultural carbon emissions mainly exists in 
the western cities, especially in Ganzhou and Shangrao. 
By contrast, Quzhou, Lishui and Wenzhou which located 
in the northern part became the cities that arable land area 
exists a negative impact on agricultural carbon emissions. 
The results further prove that the agricultural development 
of many cities is at the expense of environmental interests, 
that is, increasing arable land means increasing agricultural 
carbon emissions. Therefore, enhancing the capability of 
deep soil to store the carbons and scientifically changing the 
way of land cultivation are effective ways to reduce carbon 
emissions and ultimately achieve sustainable development.

DISCUSSION AND CONCLUSIONS 

This paper remeasured the total agricultural carbon emissions 
based on the emission coefficients and OWA aggregation 
operator in the WTS Economic Zone during the period from 
2010 to 2017. Moreover, the GTWR model was applied to 
empirically test the influencing factors on agricultural carbon 
emissions. By and large, the main findings could be listed as 
follows. First, from the temporal dimension, although total ag-
ricultural carbon emissions in most cities showed a downward 
trend in the WTS Economic Zone. Second, from the spatial 
dimension, Fu’zhou, Shangrao and Ganzhou have relatively 
large agricultural carbon emissions, while Xiamen, Chaozhou 
and Putian have relatively small agricultural carbon emissions. 
Finally, the empirical results of the GTWR model indicated 
that the influences on agricultural carbon emissions had the 
characteristics of geospatial nonstationarity. Based on the 
above results, this paper puts forward constructive suggestions 
on the development of low-carbon agriculture and reduction 

of agricultural carbon emissions in the WTS Economic Zone.

	(1)	 Low-carbon agriculture is based on science and tech-
nology, so to reduce agricultural carbon emissions, it is 
necessary to strengthen innovative research in agricul-
tural science and technology. Although the total amount 
of investment in agricultural science and technology in 
the cities of the WTS Economic Zone has increased, the 
intensity of investment is still insufficient. For instance, 
although China’s agricultural science and technology 
investment accounted for 2.14% of GDP in 2017, Fu-
jian’s agricultural science and technology investment 
accounted for only 0.96% of GDP. Therefore, in the 
process of constructing the WTS Economic Zone, the 
governments need to continuously increase investment 
in agricultural science and technology, support basic and 
frontier agricultural scientific research, and accelerate 
the popularization and application of agricultural tech-
nology achievements, e.g., reduce agricultural carbon 
emissions by promoting intermittent irrigation in paddy 
fields and improving livestock collection and storage 
technology. Moreover, organic agriculture may present 
a positive role in mitigating the environmental burden. 

	(2)	 The agricultural industry structure needs to be adjusted 
and optimized to vigorously develop modern agricul-
ture and ecological agriculture, and finally improve 
the multifunction of agricultural production. Under the 
circumstances of ensuring food security, the planting 
industry is an important breakthrough in reducing agri-
cultural carbon emissions. The interrelated main bodies 
need to optimize the planting structure, reduce the crop 
cultivation with large energy consumption and chemical 
input, and actively adopt new varieties with low carbon, 
high yield and stress resistance. Besides, combining the 
advantages of resources in different cities, governments 
and enterprises should vigorously cultivate characteristic 
agriculture and take the road of agricultural moderniza-
tion. Besides, the development of urban agriculture is of 
great significance to the reduction of agricultural carbon 
emissions. 

	(3)	 The government should effectively control the process 
of urbanization, improve the basic quality of agricultural 
personnel, and deepen the concept of green consump-
tion. The governments should strengthen the training 
of rural residents’ skills and environmental awareness 
of modern agriculture, then train a group of practical 
talents with both knowledge and quality to meet the 
needs of modern low-carbon agriculture construction. 
Furthermore, in the process of urbanization, the govern-
ments should increase the investment of infrastructure, 
and provide necessary conditions for the realization 
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of agricultural scale and industrialization. Thus, the 
governments should correctly handle the nurturing 
relationship between industry and agriculture, actively 
implement the strategy of urban-rural integration, and 
ultimately realize the coordinated development of ur-
banization and agricultural modernization.

	(4)	 As a regional concept, the WTS Economic Zone aims 
to highlight the overall regional advantages through 
resource integration and mutual exchanges and links. 
Therefore, in the process of developing low-carbon 
agriculture and reducing agricultural carbon emissions, 
exchanges and integration are indispensable. For 20 
prefecture-level cities in the WTS Economic Zone, ag-
ricultural cooperation and linkages can be strengthened 
in terms of variety, technology and processing. Besides, 
the WTS Economic Zone can take advantage of the 
geographical advantages of Taiwan Province, introduce 
advanced planting technology and new agricultural 
varieties, learn new agricultural management mode, to 
effectively reduce agricultural carbon emissions.
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