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ABSTRACT

Diatomite-based porous ceramsite is a new kind of environmental material. In this study, ceramsite 
was prepared by wet grinding, a rolling-ball method, and high temperature-calcination using diatomite 
as the main raw material with the addition of a pore-forming agent and sintering assistant. X-ray 
diffraction, scanning electron microscopy, and mercury injection, were used to analyze the structure and 
characteristics of the prepared materials. Using hydroquinone as the target pollutant, the adsorption 
behavior of diatomite-based porous ceramsite was investigated. Results indicated that the diatomite-
based porous ceramsite had a pore size ranging from 500 to 3000 nm, a specific surface area of 6.14 
m2.g-1, and a porosity of 47.8%. When pH was 7, the removal rate and adsorption capacity of the 
hydroquinone by the diatomite-based porous ceramsite was 91.2% and 4.56 m2.g-1, respectively. In 
the adsorption process of hydroquinone by diatomite-based porous ceramsite, the diffusion of a liquid 
membrane was dominant, which could be better described by the quasi-first-order kinetic equation. The 
Langmuir and Koble-Corrigan equations had a higher fitting degree of data for the adsorption isotherms. 
The adsorption characteristics of the diatomite-based porous ceramsite are in accordance with the 
fixed-point adsorption of a single molecular layer and belong to a heterogeneous composite adsorption 
system. The correlation coefficient R2 and k value of hydroquinone adsorption by the diatomite-based 
porous ceramsite determined by the liquid film diffusion model were 0.848 and 0.0417, respectively.          

INTRODUCTION

Diatomite is unicellular algal debris that is deposited in 
the ocean or lakes and can form diatomite. Diatomite is 
a non-metallic porous mineral that has a small density, a 
large specific surface area, good adsorption properties, is 
chemically stable, and has pores with the size of 50 - 800 nm 
(Iuchaurroudo et al. 2016, Zahra et al. 2018, Tan et al. 2018, 
Font et al. 2018). Hydroquinone is an important chemical 
raw material and chemically synthesized intermediate that 
is widely used in photographic developer, antioxidants, and 
synthetic ammonia co-solvents in rubber. Hydroquinone is 
an important organic pollutant that is highly toxic and diffi-
cult to degrade. It can be easily oxidized into benzoquinone 
which is more toxic to the central nervous system and liver 
in humans. It is also one of the main pollutants in industrial 
wastewater which can cause great harm to organisms and the 
environment (Ergürhan et al. 2018, Yıldız et al. 2005, Xu et 
al. 2019, Li et al. 2013).

Ceramsite is a new type of porous material that has a 
small bulk density, high porosity, good chemical and thermal 
stability, can be easily regenerated at low cost with good 
mechanical strength. Ceramsite can be made of clay, sludge, 

or fly ash that is mixed with sintering aids and pore-form-
ing agents. These are ground, balled, and calcined at high 
temperature, and are widely used in construction materials, 
sewage treatments, the petrochemical industry, and gardening 
(Chen et al. 2010, Qin et al. 2015, Che et al. 2018, Li et al. 
2019, Wang et al. 2019a, Wu et al. 2016, Podder & Majum-
der 2016). In this study, diatomite-based porous ceramsite 
was prepared and its adsorption effect on hydroquinone 
was elucidated. The results provide a theoretical basis for 
exploring the efficient utilization of diatomite, the optimal 
allocation of resources, and the sustainable development of 
the environment.

MATERIALS AND METHODS

Material and Reagent

Diatomite was produced by Linjiang Beifeng Diatomite 
Company, Jilin Province, (The mass fractions of main 
compositions included: 70.38% SiO2, 2.37% Al2O3, 1.42% 
K2O, and 10.58% CaO). The pore-forming agent was car-
bon powder, provided by Nanjing Greifa Carbon Material 
Company; Bauxite powders (325 mesh), Al2O3 ≥ 65%, was 
produced by Yangquan Haotianwei Refractory Company; 
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Quartz was purchased from the Xinhui Mining Processing 
Plant in Lingshou County, China, and feldspar was obtained 
from Yantai Yitao Mining Company. The aforementioned raw 
materials were industrially pure. The analytically pure sodi-
um silicate was used as a dispersant obtained from Beijing 
Tongguang Fine Chemical Company, and the analytically 
pure hydroquinone was purchased from Qingdao Yousuo 
Chemical Technology Company.

Sample Preparation and Characterization

Diatomite, the pore-forming agent, sintering aid, water, and 
dispersant (a mass ratio of 82: 6: 18: 120: 2), were added to 
the ball mill with a grinding medium (ZrO2 ceramic ball with 
φ ≈ 8 mm) and ground for 20 min. The materials were then 
put into an oven and dried at 105°C. The diatomite-based 
porous ceramsite was obtained by dispersing, rolling, and 
calcining in a box resistance furnace at 1020°C for 2 h.

A Japan JSM-6490LV SEM was employed to observe the 
micromorphology of the ceramsite. The pore size distribution 
of samples was detected using an American Auto Pore IV 
9500 mercuryporosimeter. An ultraviolet-visible spectropho-
tometer produced by LAMBDA of PerkinElmer Company 
in the United States was used to detect the absorbance of 
hydroquinone wastewater at 288 nm. The pH value of hydro-
quinone wastewater was measured with JY-pH 2.0 pH agent 
(Shimazu, Japan). The porosity of diatomite-based porous 
ceramsite was determined using the Archimedes method.

Adsorption Experiment

In this experiment, 1g of the diatomite-based porous ceramsite 
was placed into a 150 mL conical flask, and 50 mL of hydro-
quinone solution at a concentration of 50 mg.L-1 was added. 
The conical flask was sealed and placed into a constant 
temperature shaking table for shaking. The pH was adjusted 
to 2-9 with 0.1 mol.L-1 HCl or NaOH solution (25°C, 120 
r.min-1, 24 h). After the supernatant was filtered by a 0.45 

μm membrane filter, its absorbance was measured to be 288 
nm using an ultraviolet spectrophotometer. According to 
the Lambert-Beer law, if the absorbance of the maximum 
wavelength of a solution has a good linear relationship with 
the concentration of the solution, so the adsorption qe and 
the removal rate r of hydroquinone can be calculated from 
the absorbance.

  …(1)

  

                                                                                      …(2)

Where: C0 is the concentration of hydroquinone before 
adsorption (mg.L-1); Ce represents the concentration of hy-
droquinone at adsorption equilibrium (mg.L-1); m is the mass 
of adsorbent (g); V is the volume of solution (L).

Establishment of Adsorption Kinetic, Adsorption 
Thermodynamic and Dynamic Boundary Models

Adsorption kinetics, adsorption thermodynamic, and dynam-
ic boundary models (Li et al. 2015, Jing et al. 2018, Zhu et 
al. 2016, Duan et al. 2011, Qu et al. 2018, Cheng et al. 2017, 
Chiara et al. 2019) of diatomite-based porous ceramsite to 
hydroquinone are listed in Tables 1-3 respectively.

RESULTS AND DISCUSSION

Micromorphology of the Diatomite-based Porous 
Ceramsite

Fig. 1 shows the SEM image of the diatomite-based porous 
ceramsite. The diatomite particles basically maintain the 
original pore structure (The small holes are distributed in the 
plate-shaped particles). Due to high-temperature calcination, 
the smaller holes on the diatomite particles disappear. The 
plate-shaped particles and tiny particles (sintering aids and 
pore-forming agents) are stacked to form a large gap. A large 
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Tables 2: Adsorption thermodynamics of diatomite-based porous ceramsite to hydroquinone.
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Where qe (mg.g-1) is the adsorption capacity at equilibrium, qm (mg.g-1) is the maximum adsorption capacity; Ce represents the 

concentration of adsorbate in the solution at equilibrium; kL is the Langmuir isotherm constant (related to the energy of 

adsorption); kF stands for the Freundlich isotherm constant (related to adsorption capacity and strength of adsorbents); kTh is the 

Toth isotherm constant. 

Tables 3: Dynamic boundary model of diatomite-based porous ceramsite to hydroquinone. 
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Fig. 1: SEM micrographs of the diatomite-based porous ceramsite.
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ceramsite increase with increasing pH. When the pH is 7, 
the removal effect is most efficient. The adsorption capacity 
and removal rates are 4.56 mg.g-1 and 91.2%, respectively. 
When the pH is greater than 7, the adsorption capacity of the 
diatomite-based porous ceramsite to hydroquinone decreases 
significantly. This may be due to the degree of dissociation of 
hydroquinone being lower under acidic conditions. With an 
increase in pH, the degree of dissociation of hydroquinone 
increases, which is conducive to adsorption. In the alkaline 
environment, the hydroxyl group of hydroquinone is further 
dissociated. The hydrogen bond between the hydroquinone 
and the solvent water takes up too many adsorption sites, 
which leads to a decrease in the removal rate of hydroqui-
none by the diatomite-based porous ceramsite. Therefore, 
the pH value of the solution was adjusted to 7 in subsequent 
experiments.

Adsorption Kinetic Analysis

According to the equations in Table 1, the non-linear kinetic 
adsorption models such as the quasi-first-order dynamic 
model, the quasi-second-order kinetic model, the Elovich 
model, and the double-constant model were respectively 
fitted. The non-linear kinetic adsorption of hydroquinone by 
the diatomite-based porous ceramsite is illustrated in Fig. 4, 
and the relevant parameters are shown in Table 5.

Fig. 4 shows that the adsorption process of hydroquinone 

by the diatomite-based porous ceramsite occurs in two stages. 
The adsorption capacity increases rapidly in the range from 
0 to 120 min. When t is 120 min, the adsorption capacity 
reaches 4.35 mg.g-1. After 120 min, the adsorption capacity 
increases slowly and gradually become stable. Finally, at 
1,440 min, the adsorption capacity reaches 4.4 mg.g-1. This 
is because in the first stage, there is a large number of ad-
sorption sites on the surface of ceramsite, and the adsorption 
amount increases rapidly. In the second stage, hydroquinone 
in the solution occupies a large number of adsorption sites 
on the surface of ceramsite, resulting in slow adsorption. 
According to Table 1, the correlation coefficient (R2 = 0.979) 
of the quasi-first-order kinetic equation is greater than that 
of the quasi-second-order kinetic equation (R2 = 0.953), the 
Elovich model, and the double constant. 

The adsorption process of hydroquinone by the dia-
tomite-based porous ceramsite can be accurately demon-
strated by quasi-first-order and quasi-second-order kinetic 
equations. The quasi-first-order kinetic model is based on the 
assumption that the adsorption process is controlled by dif-
fusion steps. The quasi-second-order kinetic model is based 
on the assumption that the adsorption rate is controlled by 
the chemical adsorption mechanism. The quasi-second-order 
kinetic model includes all adsorptions, such as liquid film 
diffusion, intraparticle diffusion, and chemical adsorption 

(Zhang et al. 2018, Pholosi et al. 2020). The adsorption of 

Table 4: Pore size distribution, porosity, and specific surface area of the diatomite-based porous ceramsite.

Pore structure index Specific surface area 
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Mean pore diameter
(nm) 

 Pore size distribution
 (nm)

Porosity
(%)

No carbon powder 3.21 723.4 460~1800 23.7

With carbon powder 6.14 1493.8 500~3000 47.8
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Fig. 3: Effect of pH on adsorption of the diatomite-based porous ceramsite.
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hydroquinone by the diatomite-based porous ceramsite is 
dominated by liquid film diffusion. The quasi-first-order ki-
netic model can describe the whole adsorption process and is, 
therefore, more accurate in describing the adsorption process 
of hydroquinone by the diatomite-based porous ceramsite.

Adsorption Thermodynamic Analysis

The adsorption isotherm equations (Langmuir, Koble-Cor-
rigan, Toth, and Redlich-Peterson) were used to fit the 
experimental data of the adsorption of hydroquinone by the 
diatomite-based porous ceramsite (Cui et al. 2019, Mudziel-
wana et al. 2019, Raganati et al. 2018, Lonappana et al. 2018, 
Wang et al. 2019b). The fitting results are shown in Fig. 5, 
and the fitting parameters are summarized in Table 6.

From Fig. 5 and Table 6, the Langmuir and Koble-Corrig-
an equations can well fit the data of the adsorption isotherm. 
The Langmuir equation is an adsorption isothermal model 
based on single molecular layers, that is, adsorption only 
occurs on the outer surface of the adsorbent. The Koble-Cor-
rigan equation can be used to present the composite adsorp-
tion system of uniform adsorption and uneven adsorption, 
which shows that the adsorption process is more complex and 
related to the porous composite characteristics of ceramsite. 
The adsorption characteristics of diatomite-based porous 
ceramsite conform to the fixed-point adsorption of a single 
molecular layer. Each active adsorption site on the ceramsite 
only adsorbs one molecule, and there is no transfer or inter-
action between single molecules adsorbed on the site. The 

Table 5: The fitting parameters of the kinetic adsorption model.

Kinetic model      Pseudo-first-order model                    Pseudo-second-order model

HQ R2

0.979
q

4.33256             
 k

0.10615
R2

0.953
Q

4.50573
K

0.03816

Kinetic model Elovich model             Double-constant model

HQ R2

0.669
a

2.10892
k

0.38423
  R2

  0.603
a

0.91768
k

0.09233

Table 6: Fitting parameters of the thermodynamic model of adsorption.

Model                 Langmuir model             Toth model

HQ R2

0.9503
q

  4.7608
k

0.63128
R2

0.944
q

5.0735
k

0.775
t

0.6494

Model                       Koble-Corrigan model              Redlich-Peterson model

HQ R2

0.9535
a

3.5976
b

0.7152
n

0.7181
R2

0.9406
A

2.8528
B

0.5756
g

1.0100

adsorption site on the ceramsite only adsorbs one molecule, and there is no transfer or interaction between single 

molecules adsorbed on the site. The maximum adsorption capacity is a fixed value. Meanwhile, the adsorption on 

the surface of ceramsite is heterogeneous and belongs to a heterogeneous composite adsorption system. 

 
Fig. 5: Thermodynamic nonlinear fitting diagram. 
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maximum adsorption capacity is a fixed value. Meanwhile, 
the adsorption on the surface of ceramsite is heterogeneous 
and belongs to a heterogeneous composite adsorption system.

Dynamic Boundary Analysis

A Dynamic boundary model can be used to describe the 
adsorption behavior of porous adsorbents. The adsorption 
process on the surface of the diatomite-based porous cer-
amsite is divided into three steps: 1) liquid film diffusion, 2) 
intragranular diffusion, 3) adsorption chemical reaction on 
the active groups inside the particles. According to Table 1, 
the linear fitting of the dynamic boundary model is shown in 
Fig. 6, and the fitting parameters are summarized in Table 7.

From the fitting parameters in Table 7, the liquid 
film diffusion model exhibits a higher fitting degree for 

the adsorption of hydroquinone by the diatomite-based 
porous ceramsite with a correlation coefficient R2 =0.848, 
followed by the fitting degrees of the internal diffusion 
model of particles, and the chemical reaction model, which 
indicated that the adsorption rate of hydroquinone on the 
surface of ceramsite is mainly controlled by the liquid 
film diffusion (Hosokawa et al. 2018, Sun et al. 2017). 
This data demonstrated that the adsorption mechanism 
of hydroquinone by diatomite-based porous ceramsite is 
mainly through micropores on the ceramsite surface and the 
charge adsorption on the material surface (Jegasothya et al. 
2004, Sun et al. 2018, Li et al. 2018). The K value can be 
used to measure the speed of adsorption. The K value of the 
liquid film diffusion model is 0.04173, which is much larger 
than that fitted by the intragranular diffusion and chemical 

larger than that fitted by the intragranular diffusion and chemical reaction models. These results indicated that the 

liquid film diffusion is relatively rapid in the adsorption process, while the intragranular diffusion and chemical 

reactions are relatively slow in the adsorption process.  

 

(a) The fitting line of liquid film diffusion.    
   (b) The fitting line of intragranular diffusion. 

 
(c) The fitting line of chemical reactions. 

Fig. 6: The fitting lines of dynamic boundary models on the diatomite-based porous ceramsite. 
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Table 7: The fitting result of the dynamic boundary model.

Fitting parameters
               

Liquid film diffusion Intragranular 
diffusion

Chemical reaction

k
R2

0.04173
0.84775

0.00193
0.17884

0.00164
0.13333
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reaction models. These results indicated that the liquid 
film diffusion is relatively rapid in the adsorption process, 
while the intragranular diffusion and chemical reactions are 
relatively slow in the adsorption process. 

CONCLUSION

Diatomite-based porous ceramsite has a high porosity, a 
specific surface area, and a better adsorption performance 
for hydroquinone. When the pH is 7, the removal rate and 
adsorption capacity of hydroquinone in the sample can reach 
91.2% and 4.56 mg.g-1, respectively. The quasi-first-order 
kinetic, and the quasi-second-order kinetic equations have 
a high fitting degree for the adsorption data of the dia-
tomite-based porous ceramsite. The diffusion of the liquid 
films dominates the adsorption process of hydroquinone by 
ceramsite and the quasi-first-order kinetic equation is more 
accurate. The Langmuir and Koble-Corrigan equations can 
well fit the adsorption isotherm data. The adsorption char-
acteristics of the diatomite-based porous ceramsite conform 
to the fixed-point adsorption of a single molecular layer. 
The adsorption on the surface of ceramsite is heterogeneous 
and seen as a heterogeneous composite adsorption system. 
The fitting results of the dynamic boundary model and the 
experimental data indicated that the liquid film diffusion 
model has a high fitting degree for the adsorption process of 
hydroquinone by the diatomite-based porous ceramsite, with 
a correlation coefficient of R2 = 0.848 and adsorption rate 
of k = 0.04173. The adsorption mechanism of hydroquinone 
by the diatomite-based porous ceramsite mainly occurs in 
the micropores on the ceramsite surface, and the charge 
adsorption on the material surface. 
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