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ABSTRACT

The sorption capacities of the macrofungus viz. Ganoderma lobatum (C0) and its biochar (C400) 
were evaluated for the biosorption of Cu(II) from aqueous solution under different conditions, including 
adsorbent doses, pH of the solution, contact time and initial Cu(II) concentration. The results showed 
that Ganoderma lobatum could be used as an efficient biosorbent for the removal of Cu(II) ions from 
an aqueous solution. The desired biosorbent dose in the case of C0 and C400 for Cu(II) adsorption 
was 4 g/L, and the optimal pH value for biosorption was 8 for Cu(II). The Freundlich isotherm model 
fitted the absorption data of Cu(II) for both C0 and C400 better than the Langmuir isotherm model, and 
the adsorption capacity of C0 was better than C400. Our results indicate that C0 has a higher removal 
efficiency than C400 in adsorbing Cu(II) ions from aqueous solution. Biosorption kinetics were also 
studied using pseudo-first-order and pseudo-second-order models, which showed that the biosorption 
processes of Cu(II) ions based on C0 and C400 were in accordance with the pseudo-second-order 
kinetics.   

INTRODUCTION

Water pollution by heavy metals at low concentrations is 
a worldwide environmental problem. Many methods have 
been widely used to remove these toxic substances (Fomina 
& Gadd 2014). However, these methods have become 
less effective because of low metal concentrations (Wang 
& Chen 2009). Therefore, as an excellent alternative to 
conventional techniques, biosorption has emerged as the 
most promising process for treating pollutants in the aquatic 
environment, especially the removal of low concentrations 
of heavy metals in the aqueous environment, because of its 
high efficiency, low cost, and non-hazardous nature (Javaid 
et al. 2011, Kapoor & Viraraghavan 1995). In recent years, 
macrofungi have attracted attention as biosorbents. Many 
studies have confirmed that copper ions in aqueous solutions 
are effectively adsorbed by the fruit bodies of macrofungi 
such as Pycnoporus sanguineus (Zulfadhly et al. 2001), 
Agaricus macrosporus (Melgar et al. 2007), Pleurotus 
ostreatus (Javaid et al. 2011), Auricularia polytricha (Xinyu 
et al. 2010), and Auricularia polytricha (Yu et al. 2010). 
Moreover, macrofungi grow prolifically and are found in 
many parts of the world (Vimala et al. 2011). They are 
visible in size, tough in texture, and have other physical 
characteristics that are conducive to their development 
as biosorbents without the need for immobilization or 
deployment of a sophisticated reactor configuration, as in 

the case of microorganisms (Muraleedharan et al. 1994). The 
adsorption capacity of macrofungi clearly depends on the 
species (Nagy et al. 2014). To our knowledge, no reports in 
the literature have examined the biosorption of heavy metal 
using the macrofungus Ganoderma lobatum. It is a species 
of wood-decaying fungi in the family Ganodermataceae 
(order Polyporales), widely distributed in China, America 
and Mexico, growing alone or gregariously on decaying 
logs and stumps of various hardwoods. The cap is flat and 
up to 20 cm wide, and the flesh of the cap is dark brown to 
cinnamon-brown, woody.

The aim of the present work was to investigate the bio-
sorption potential of the fruit body of Ganoderma lobatum 
and its biochar for the removal of Cu(II) from an aqueous 
solution. Optimum biosorption conditions were determined 
as a function of the biomass dose, pH, contact time, and 
initial metal concentration. The Langmuir and Freundlich 
models were employed to describe equilibrium isotherms. 
Biosorption mechanisms of Cu(II) onto Ganoderma lobatum 
and its biochar were also evaluated in terms of kinetics.

MATERIALS AND METHODS

Biosorbent Preparation

The macrofungus Ganoderma lobatum was collected from 
Mojiang County, Yunnan Province, China. Fruit bodies were 
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washed 3 times using distilled water, sun-dried for 3 days, 
and then dried in an oven at 80°C for 48 h. The dried fruit 
bodies were ground and then filtered through a 2-mm nylon 
sieve. The dried samples were placed in clean polyethene 
sample bags, labelled C0 for future use, and a portion of the 
dried samples was pyrolyzed in an electrical muffle furnace 
at 400 °C for 4 h under oxygen-limited conditions. After 
cooling to room temperature, they were filtered through a 
2-mm nylon sieve and stored in clean polyethene sample 
bags labelled C400 for future experiments.

Reagents and Equipment

All chemicals used in this study were of analytical grade, 
and deionized water was used for all dilutions. A pH meter 
(Leici, ZD-2) was used to measure pH values in the aque-
ous phase. Cu(II) concentrations in the aqueous phase were 
determined by ICP-OES (VISFA-MPX). Fourier Transform 
Infrared (FT-IR) spectra of C0 and C400 prepared as KBr 
pellets were recorded in the 400-4000 cm−1 region using a 
Varian FT-IR 640 spectrometer.

A stock Cu(II) solution of 1000 mg/L was prepared by 
dissolving 3.8019 g Cu(NO3)2∙3H2O in 1000 mL of deionized 
water. The Cu(NO3)2∙3H2O used in this work was analytical 
grade and was supplied by Sinopharm Chemical Reagent Co., 
Ltd. (China). Stock solutions were used to prepare diluted 
solutions of different working concentrations. HCl (0.1 M) 
and NaOH (0.1 M) volumetric solutions were used to adjust 
the solution pH. 

Batch Biosorption Experiments

The batch biosorption experiments for C0 and C400 were 
carried out in 150-mL stoppered conical flasks containing 0.2 
g of the biosorbent in 50 mL of the Cu(II) solutions (10 mg/L) 
separately at room temperature on a rotary shaker at 100 
rpm. For optimization of the experimental conditions, batch 

studies were performed for different metal concentrations 
(10-200 mg/L), pH (3-10), biosorbent doses (0.4-8 g/L), and 
contact times (10-1440 min). The contents of the flask were 
filtered, and the residual metal concentration in the filtrates 
was determined by ICP-OES (VISFA-MPX). Each sample 
was evaluated three times, and the results are presented as 
average values.

To evaluate the adsorption capacity of Cu(II) onto C0 
and C400, the amount of Cu(II) adsorbed per unit mass of 
C0 and C400 was calculated using the following equation:
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Fig. 1: FT-IR spectrum of the macrofungus (Ganoderma lobatum) (a) and its biochar (b). 
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Fig. 1: FT-IR spectrum of the macrofungus (Ganoderma lobatum) (a) and its biochar (b).
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band at approximately 3200-3600 cm−1 could be attributed 
to stretching vibrations of hydroxyl groups (–OH). The peak 
observed at 2925 cm−1 was due to C–H stretching of CH2 
groups. The band at 1639 cm−1 indicated a fingerprint region 
of C=O, C–O, and O–H groups that exist as functional groups 
(Wang & Chen 2009). The bands observed at 1074 cm−1 were 
assigned to C–O stretching of alcohols and carboxylic acids 
(Fig.1a) (Fomina & Gadd 2014). For the calcined C400, the 
absorption bands of various functional groups disappeared, 
indicating that the organic structure of the fungal biomass 
had been decomposed at a high temperature (Fig. 1b). As 
shown in Fig. 1b, the weak bands at approximately 1620 and 
849 cm−1 were attributed to the vibrations of C=C and C–C, 
respectively. FT-IR studies revealed that several functional 
groups, which can bind transition metal ions including Cu(II), 
were present in C0. These functional groups were mainly 
derived from the cellulose, hemicellulose, and lignin of 
the fungal cell wall, as well as some other kinds of organic 
components (Dashtban et al. 2009, Pérez et al. 2002).

Effect of the Adsorbent Dose

The effect of the adsorbent dose on the Cu(II) ion removal 
efficiency is presented in Fig. 2. The removal efficiencies (%) 
were found to increase steeply with increasing concentrations 
of C0 and C400 up to a dose of 4 g/L. The maximum removal 
efficiencies of C0 and C400 respectively were 97.80% and 
96.89% at the adsorbent dose of 4 g/L. However, beyond this 
dose, the increase in removal efficiencies of C0 and C400 
were marginal and became nearly constant. Similar results 
have been reported for metal ion biosorption in an aqueous 
solution by oyster mushroom (Pleurotus platypus) (Vimala 
& Das 2009). Therefore, the optimum adsorbent dose was 
considered to be 4 g/L for further experiments. The above 

results can be explained by the finding that the biosorption 
sites remain unsaturated during the biosorption reaction, 
whereas the number of sites available for biosorption site 
increases by increasing the biosorbent dose (Sar & Tuzen 
2009b). However, a high adsorbent dose results in aggregates 
of adsorbent due to interference between binding sites at a 
higher adsorbent dose or insufficient metal ions in the solu-
tion with respect to available binding sites (Rome & Gadd 
1987). Moreover, protons might combine with metal ions 
for ligands and thereby decrease the interaction of metal 
ions with cell components (Ghorbani et al. 2008, Sağ & 
Kutsal 1996). 

Effect of pH

The effect of initial pH on the removal efficiencies of Cu(II) 
ions onto adsorbent were investigated from pH 3-10 for 
the initial metal concentration of 10 mg/L Cu(II) solution. 
The results for the pH effect on the removal efficiencies of 
Cu(II) are shown in Fig. 3. The removal efficiencies of C0 
and C400 for Cu(II) ions increased from 90% to 97% and 
from 93% to 97%, respectively, as the pH was increased 
from 3 to 8. The maximum removal efficiencies of 97 % 
were found at pH 8 for the two adsorbents. Therefore, 
all the biosorption experiments were carried out at pH 8. 
Previous researchers have indicated that pH is one of the 
most important factors affecting the adsorption of heavy 
metal ions from aqueous solution. This parameter is directly 
related to the competition ability of hydrogen ions with metal 
ions for active sites on the biosorbent surface (Senthilkumar 
et al. 2011, Tsai et al. 2007). Generally, metal biosorption 
involves complex mechanisms of ion-exchange, chelation, 
adsorption by physical forces, and ion entrapment in inter 
and intrafibrillar capillaries and spaces of the cell structural 
network of a biosorbent (Chojnacka et al. 2005). At low 
pH values, protons occupy most of the biosorption sites 
on the biosorbent surface, and fewer copper ions can be 
absorbed because of the electric repulsion with protons on the 
biosorbent. When the pH values increase, biosorbent surfaces 
are more negatively charged, and the biosorption of metal 
ions (positive charge) increases and reaches equilibrium at 
pH 8. Decreases in biosorption at higher pH values (> 8) are 
due to the formation of soluble hydroxylated complexes of 
the metal ions and their competition with the active sites, 
resulting in a repeated decrease in retention (Anayurt et al. 
2009, Sar & Tuzen 2009a). 

The FT-IR spectroscopic analysis showed that the macro-
fungus (C0) had various functional groups, and these groups 
were involved in almost all potential binding mechanisms. 
Moreover, depending on the pH value of the aqueous solu-
tion, these functional groups participate in metal ion binding 
(Sar & Tuzen 2009a). 
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Fig. 2: Effect of the biosorbent dose on Cu(II) removal efficiencies by the 
macrofungus (Ganoderma lobatum) and its biochar.



582 Silin Yang et al.

Vol. 20, No. 2, 2021 • Nature Environment and Pollution Technology  

Effect of Contact Time 

The effect of contact time on the removal efficiencies of 
Cu(II) was investigated. The removal efficiencies of Cu(II) 
by the two biosorbents as a function of time are depicted in 
Fig. 4. In the case of Cu(II) removal efficiencies by C0 and 
C400, the removal efficiency reached equilibrium at 480 min, 
which was chosen as contact time for further experiments. 
In the initial stages, the removal efficiencies of Cu(II) by C0 
and C400 increased rapidly due to the abundant availability 
of active binding sites on the biosorbents, and with gradual 
occupancy of these sites, the sorption became less efficient 
at later stages (Costa & Leite 1991). 
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Fig. 3: Effect of the initial pH on the Cu(II) biosorption capacity of the 
macrofungus (Ganoderma lobatum) and its biochar.
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Fig. 4: Effect of contact time on the Cu(II) biosorption capacity of the 
macrofungus (Ganoderma lobatum) and its biochar

The initial concentration of the metal in the solution 
dramatically influenced the equilibrium uptake of Cu(II). 
It was noted that the initial concentration increased the 
sorption of Cu(II), which was generally expected due to the 
equilibrium process (Fig. 5). This increase in uptake capacity 
of the biosorbents (C0 and C400) with the increase in initial 
metal concentrations was due to the higher availability of 
metal ions (copper) for sorption. Moreover, the higher initial 
concentration provided increased driving force to overcome 
all the mass transfer resistance of metal ions between the 
aqueous and solid phase, resulting in a higher probability of 
collision between metal ions and sorbents. This phenome-
non also results in higher metal uptake (Tewari et al. 2005, 
Vimala & Das 2009).

Biosorption Isotherm Models 

Sorption models are often used to predict the maximum 
adsorption capacity of the adsorbent. The Langmuir and 
Freundlich models are the most widely used models for the 
adsorption of metal ions with biomaterials (Febrianto et al. 
2009, Langmuir 1918). The equilibrium adsorption data 
were analysed according to the Langmuir and Freundlich 
adsorption isotherm models. The Langmuir model suggests 
that monolayer sorption on a homogeneous surface occurs 
without interactions between absorbed molecules. In addi-
tion, the model assumes uniform energies of sorption onto the 
surface and no transmigration of the sorbate (Vimala & Das 
2009). The Langmuir model can be written in linear form.
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Where, KF (mg/g) is a constant relating the biosorption capacity, and n is an empirical 

parameter relating to the biosorption intensity, which varies with the heterogeneity of the material. 
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aqueous and solid phase, resulting in a higher probability of collision between metal ions and 
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capacity of the macrofungus (Ganoderma lobatum) and its biochar.
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constant related to the free energy of biosorption.

The Freundlich model assumes a heterogeneous sorption 
surface. The Freundlich model is

 

9 
 

Sorption models are often used to predict the maximum adsorption capacity of the adsorbent. 

The Langmuir and Freundlich models are the most widely used models for the adsorption of metal 

ions with biomaterials (Febrianto et al. 2009, Langmuir 1918). The equilibrium adsorption data 

were analysed according to the Langmuir and Freundlich adsorption isotherm models. The 

Langmuir model suggests that monolayer sorption on a homogeneous surface occurs without 

interactions between absorbed molecules. In addition, the model assumes uniform energies of 

sorption onto the surface and no transmigration of the sorbate (Vimala & Das 2009). The Langmuir 

model can be written in linear form. 

mLm

e

e

e

qKq
C

Q
C 1

      …(3) 

Where qm (mg/g) is the monolayer biosorption capacity of the adsorbent, and KL (L/mg) is the 

Langmuir sorption constant related to the free energy of biosorption. 

The Freundlich model assumes a heterogeneous sorption surface. The Freundlich model is 

Fee KC
n

Q lnln1ln       …(4) 

Where, KF (mg/g) is a constant relating the biosorption capacity, and n is an empirical 

parameter relating to the biosorption intensity, which varies with the heterogeneity of the material. 
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This result indicated that C0 had greater removal efficiencies for Cu(II) than C400. It is likely that 

the functional groups of C400 were destroyed during the carbonization process. A comparison of 

the adsorption capacity of this biosorbent with those of different biosorbents reported by other 

researchers is provided in Table 2, and it can be concluded that the macrofungus as an effective 
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 …(4)

Where, KF (mg/g) is a constant relating the biosorption 
capacity, and n is an empirical parameter relating to the 
biosorption intensity, which varies with the heterogeneity 
of the material.

The linear plots of the Langmuir and Freundlich iso-
therm models for the sorption of Cu(II) on C0 and C400 
are presented in Fig. 6. The linear regression coefficient 
values (R2) were presented in Table 1, which indicated that 
the Langmuir model was not able to adequately describe 
the relationship between the amounts of Cu(II) adsorbed by 
the adsorbent and its equilibrium concentration in solution. 
However, the Freundlich isotherm model exhibited a better 
fit to the sorption data of Cu(II) for both C0 and C400 than 
the Langmuir isotherm model, since it provided higher R2 

values. Moreover, the n and KF of C0 for Cu(II) biosorption 
were higher than for C400. This result indicated that C0 had 
greater removal efficiencies for Cu(II) than C400. It is likely 
that the functional groups of C400 were destroyed during 
the carbonization process. A comparison of the adsorption 
capacity of this biosorbent with those of different biosorbents 
reported by other researchers is provided in Table 2, and it 
can be concluded that the macrofungus as an effective bio-
sorbent may play an important role in the removal of heavy 
metals from an aqueous environment. 

Biosorption Kinetics

To clarify the biosorption kinetics of Cu(II) ions onto C0 
and C400, two kinetic models, the pseudo-first-order and 
pseudo-second-order model were applied to the experimental 
data. The linear form of the pseudo-first-order rate equation 
is given as follows (Senthilkumar et al. 2011):
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Table 1: Isotherm equations and parameters for Cu(II) biosorption by the macrofungus (Ganoderma lobatum) and its biochar.

Biosorbent Langmuir Freundlich 

Equation qm KL R2 Equation n KF R2

C0 y = 0.0544x + 0.7947 18.38 0.0684 0.9697 y = 0.3345x + 1.2132 2.989 3.364 0.9956

C400 y = 0.0609x + 1.2912 16.42 0.0471 0.9408 y = 0.3822x + 0.8368 2.616 2.308 0.993
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Fig. 6: Linear fitting of the Langmuir (A) and Freundlich (B) isotherms for Cu(II) biosorption of the macrofungus (Ganoderma lobatum) and its  
biochar.

Table 2: Sorption capacity of Cu(II) on different macrofungi.

Biosorbent Adsorption capacity (mg/g) pH Metal concentration (mg/L) References

Ganoderma lobatum 18.38 8 10-160 Present study

Auricularia polytricha 8.36 5 0-250 (Xinyu et al. 2010)

Auricularia polytricha 18.69 6.03-6.56 10-100 (Yu et al. 2010)

Tremella fuciformis 20.15 6.03-6.56 10-100 (Yu et al. 2010)

Pleurotus ostreatus 8.06 4.5 20-100 (Javaid et al. 2011)
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Where K1 and K2 are the rate constant of the first-order 
equation (min−1) and second-order equation (g/mg min), 
respectively (Cheung et al. 2001). 

The values of the rate constants and correlation coeffi-
cients for the two models are shown in Table 3. The bio-
sorption mechanisms of Cu(II) ions onto the C0 and C400 
biomass does follow the pseudo-second-order kinetic model 
(Fig. 7). The K2 value of C0 was significantly higher than 
C400. This result indicated that the sorption rate of C0 for 
Cu(II) was greater than C400.

CONCLUSION

The macrofungus as an effective biosorbent of Cu(II) was 
confirmed. The effects of the biosorbent dose, pH, contact 
time, and initial copper ion concentration on the removal 
efficiencies were evaluated. The present results showed that 
the desired biosorbent dose in the case of Ganoderma loba-
tum and its biochar for Cu(II) adsorption was 4 g/L, and the 
pH value for biosorption was found to be 8 for Cu(II). The 
Freundlich isotherm model exhibited a better fit to the sorp-
tion data of Cu(II) for both C0 and C400 than the Langmuir 
isotherm model. The results indicated that C0 had greater 
removal efficiencies for Cu(II) than C400. This finding can 
be interpreted as due to the decomposition of the functional 
groups of C400 during the carbonization process. Equilib-
rium data showed that the biosorption of Cu(II) ions onto 

C0 and C400 effectively followed the pseudo-second-order 
kinetic model. Further research is in progress to explore the 
mechanism underlying the biosorption process. 
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