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       ABSTRACT

Climate change is expected to exacerbate the hydrological cycle globally and have a significant 
impact on water resources. The Intergovernmental Panel on Climate Change (IPCC) Fourth 
Assessment Report states that observed and projected increases in both temperature and 
precipitation variability are the main reasons for projected climate change impacts on natural 
water resources. The examination of meteorological variables of the region, especially when 
agriculture is rainfall dependent, is very essential to formulate feasible adaptation strategies. 
As a result, using CORDEX-SA (Coordinated Regional Downscaling Experiment-South Asia) 
rainfall data (2021 to 2050), trend analysis was used to examine variations in rainfall data in 
the Kokkarne catchment of the Seetha river basin. Regression analysis was used to identify 
the season-wise rainfall trend. Annual, Summer, Monsoon, and Winter rainfall have depicted 
increasing trends with a rate of 2.46, 1.21, 2.77, and 0.009 mm per year respectively. The 
post-monsoon rainfall has projected a declining trend with a rate of -1.54 mm per year. Hence 
it is recommended that the designed strategies in the agricultural sector have to take the 
increasing, decreasing, and erratic nature of the trend of rainfall into consideration. Further 
considering the use of a Multi-Model Ensemble (MME) is reducing the SD and CV of rainfall 
data by 862 mm and 48.5% respectively. 87% of annual rainfall is contributed by monsoon 
season only with a Standard deviation of 424.4 mm and CV of 12%.

INTRODUCTION

Water is a very essential component of all the biological 
processes taking place on the earth, and there is no substitute 
for it. Water constitutes a vital resource for sustaining life 
on earth (Earman & Dettinger 2011, Hossain 2015). Water 
is regarded as a source of energy and is used for a variety of 
purposes in the home, agriculture, and business. But Water 
is a limited natural resource (Deka et al. 2021, Hossain 
2015). Rainfall is the major source of supply of water in any 
region. The water requirements of Plants are met by natural 
sources and irrigation. Crop output, particularly in rain-fed 
locations, is highly dependent on rainfall occurrence, hence it 
is critical to study the variation of rainfall (Bhatla et al. 2020) 
to predict the likelihood of rainfall patterns from the available 

historical records of hydrological data. The probability 
distribution helps in relating the severity of extreme events 
like droughts, floods, and severe storms to their number of 
occurrences which enables the prediction of their likelihood 
pattern throughout time. By fitting a frequency distribution 
to a hydrological dataset, the likelihood of patterns of 
random parameters can be estimated. In the present study, 
the hydrological data is analyzed, and the variability in the 
data under consideration is studied concerning the statistical 
parameters, to fit the distribution. A slight change in any of 
the climatic variables has an impact on crop growth phases, 
lowering yield stability and quality (Mahilange & Das 2018). 
Crop growth and crop yield are negatively influenced by 
changes in climatic variables (Acquah & Kyei 2012, Panda 
& Sahu 2019). Crop yields are primarily dependent on 
rainfall received during the monsoon season, while crops 
sown in the winter season are also reliant on soil moisture 
maintained from the preceding monsoon. As a result of 
these influencing factors, the shifting rainfall pattern and its 
influence on agriculture and water supplies have become a 
significant climatic issue. 
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The agricultural output reflects the economic well-being 
of the country (Cheng & Hu 2012, Goswami & Paul 2010, 
Hussain & Taqi 2014). To avoid water resource difficulties, 
it is vital to properly manage current resources. So having an 
idea about the pattern of rainfall and its trend is crucial from 
the standpoint of agriculture. To deliver the needed amount 
of water to the crops for their growth, it is critical to have 
comprehensive knowledge of rainfall trends. Climate scientists 
will benefit from the trend analysis in their hunt for climate 
change implications and repercussions. The primary goal of 
a trend test is to determine if the values of a data series are 
increasing or decreasing. Trend analysis is primarily used to 
assess the direction of a trend and to quantify its magnitude. 
The key objectives of this study, with the above considerations, 
are, to assess the multi-model ensemble data, to analyze the 
seasonal trend of rainfall, and to assess discharge patterns. This 
form of analysis will aid in the evaluation of actions aimed at 
ensuring enough irrigation and food security.

DATA USED AND METHODOLOGY

Study Area

The study area under consideration is the Kokkarne 
catchment, belonging to the Seetha river basin. Seetha river 

originates in the Western Ghats of India in Karnataka, which 
travels towards the west and drains into the Arabian sea. The 
Kokkarne catchment is located between 13.25° N and 13.75° 
N latitudes and between 74.75° E and 75.25° E longitudes. 
The delineated catchment area of Kokkarne catchment is 385 
km2 with a 30-year average rainfall of 3915.61 mm during the 
historical period (1991-2020). The drainage net is composed 
of small streams that originate in the Western Ghats, which 
are dominated by the younger Greenstone lithoclan. The 
Western Ghats, an important morpho element that works as a 
water barrier for the west-flowing and east-flowing rivers of 
the southwestern section of the Indian peninsula, is formed 
by these metasediments and metavolcanics. The location 
map of the study area is shown in Fig. 1. 

Data

In this study, the rainfall dataset from the following 
five selected GCM (Global Climate Model) datasets 
(ACCESS1-0, GFDL-CM3, CNRM-CM5, MPI-ESM-LR, 
NorESM1-M) is obtained from http://cccr.tropmet.res.in. 
This CORDEX-SA data (Coordinated Regional Downscaling 
Experiment-South Asia) obtained for RCP 4.5 and the period 
of 2021-2050 is bias corrected before using as input to the 
Soil and Water Assessment Tool (SWAT) model. Table 1 

 
Fig. 1: Location map of the study area (Kokkarne catchment).
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shows the data source for the study.

SWAT Model

The Soil and Water Assessment Tool (SWAT) model is 
used to simulate river outflows (Neitsch et al. 2011). It is 
a physically based rainfall-runoff model which normally 
operates on a daily time frame and basin scale and accounts 
for regional heterogeneities by dividing the watershed into 
several hydrological response units (HRUs). Each HRU has 
its unique combination of soil, land use, and elevation. The 
model estimates the hydrology of each HRU based on the 
precipitation, surface runoff, evapotranspiration, percolation, 
and return flows in the catchment. The output of the SWAT 
model helps to analyze each subbasin discharge of the 
catchment.

Representative Concentration Pathways

In the current study, RCP 4.5 scenario, which is a medium 
stabilization scenario is used. The IPCC Fifth Assessment 
Report (AR5) released in 2014 recommends RCP 4.5 as 
one of the representative concentration pathways (RCPs) 
in which radiative forcing is assumed not to overshoot 
beyond 4.5 W/m2 by the end of 2100. Radiative forcing 
is the sum of the effects of greenhouse gases and other 
forcing components. RCP 4.5 takes into account long-term 
global greenhouse gas emissions in a global framework, 
as modeled by the Global Change Assessment Model, and 
adopts a cost-cutting method to attain the target radiative 
forcing (Thomson et al. 2011). RCPs can be used to highlight 
likely climate change impacts on watershed hydrology using 
GCM-predicted datasets (Hong et al. 2016; Mudbhatkal et 
al. 2017; Shrestha & Htut, 2016).

Methodology

The various steps followed in the present study were as 
follows:

 1. The regression analysis in this study was based on IMD 

(India Meteorological Department) rainfall data from 
the Kokkarne catchment for the baseline period 1991 to 
2020. The Linear regression analysis was employed to 
discover trends in the rainfall data. One of the most basic 
approaches for calculating the trend of data in a time 
series is linear regression analysis. A parametric test that 
assumes normally distributed data is regression analysis. 
The linear relationship between time and the variable of 
interest is utilized to test the trend. The variables must 
be normally distributed, as well as be temporally and 
spatially independent, to apply this strategy correctly. 
The regression analysis can be done on the time series 
of rainfall data directly by using regression analysis 
with time as the independent variable and rainfall as 
the dependent variable, the trend in rainfall can be 
determined. The linear regression equation is expressed 
as:

 y = mk + c  (1) 

  The dependent variable is y, while the independent 
variable is x. The slope of the line is m, and the intercept 
(value of y when x = 0) is c. The rate of increase or 
decline of the variable is represented by the slope. k 
denotes the length of time in years. The rainfall trend 
has been described by the slope line. If the slope line is 
positive, it indicates that rainfall is increasing. However, 
if the slope line is negative, it indicates that rainfall is 
decreasing. The dependent variable y in this study is 
rainfall, whereas the independent variable x is the year. 
The assumption of a normal distribution is required for 
linear regression. The null hypothesis in this study is 
that the slope of the line in the graph is zero, or that the 
rainfall data shows no trend. 

  The R2 or square of the correlation value from the 
regression analysis was used to demonstrate the strength 
of the connection between the variables x and y. Which 
has a value ranging from 0.0 to 1.0. An R2 score of 1.0 
indicates that the connection is high and that all of the 
points are in a straight line. An R2 value of 0.0, on the 
other hand, indicates that there is no connection and no 
linear relationship exists between x and y.

 2. The multi-model ensemble data is analyzed with statis-
tical parameters like standard deviation and Coefficient 
of variation.

 3. The monthly distribution of rainfall in the catchment 
region is analyzed.

 4. With the data inputs presented in Table 1, the SWAT 
model was used to simulate the Kokkarne catchment. 
The generated discharge output was used for the 
analysis.

Table 1: Data source.

Component Source

Rainfall (Daily) India Meteorological Department (IMD)

Temperature (Daily) India Meteorological Department (IMD)

Discharge (Daily) Water Resources Development Organi-
sation (WRDO)

Digital Elevation Model 
(DEM)

Shuttle Radar Topography Mission 
(SRTM)

Soil map Food and Agricultural Organization 
(FAO)

Land-use/land-cover 
maps (LULC)

Water Base Worldwide Dataset
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RESULTS AND DISCUSSION  

Trend Analysis

Fig. 2 and 3 show the trend of total annual and seasonal 
precipitation over the period under consideration. The rate 
of change in a linear regression model is determined by the 
slope of the regression line, which in the case of annual 
rainfall in the current study area is around 2.46 mm/year 
as shown in Fig. 3. The increasing trend of annual rainfall 
in the current study is matching with that of the increasing 

trend of precipitation as reported by Basappa et al. (2021) and 
Nandargi & Mulye (2014) in the study regions which belong 
to the Western Ghats. While the winter, spring, and summer 
seasons have shown an increasing trend in the study region, 
the post-monsoon season has shown a minor declining trend 
as presented in Fig. 2 and Table 2.

The rate of change is defined by the slope of the re-
gression line, which in this case is roughly 1.21 mm/year, 
2.77 mm.year-1, -1.54 mm.year-1, and 0.0093 mm.year-1 
for summer, monsoon, post-monsoon, and winter rainfall 
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Fig. 2: Regression analysis of rainfall data (a) Summer, (b) Monsoon, (c) Post Monsoon (d) Winter 

 

y = 2.4656x + 4038.7
R² = 0.0023

0
1000
2000
3000
4000
5000
6000

Annual mean

Fig. 3: Regression analysis of rainfall data (2021-2050) for Kokkarne catchment
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respectively, using a linear regression model (Fig. 2). The 
post-monsoon rainfall pattern was found to be fairly varia-
ble, while the winter trend was non-significant (Fig. 2). The 
post-monsoon rainfall season is showing a declining trend. 
This kind of seasonal variation in precipitation in different 
regions has also been reported by (Cheung et al. 2008, Ge-
defaw et al. 2018, Hussain & Lee 2013, Jain & Kumar 2012, 
Kumar et al. 2010, Łupikasza et al. 2011, Malik & Kumar 
2020, Radhakrishnan et al. 2017). The weather system being 
different in different seasons of the year is the prime factor 
leading to seasonal variation in precipitation as reported by 
Arora et al. (2006).

GCM Uncertainty

Climate statistics for the near future are shown in Table 3 
for the summer, monsoon, post-monsoon, and winter seasons 
and annual time scales. It is worth noting that the majority 
of the forecasts show a rise in mean annual rainfall when 
compared to the rainfall data of the baseline period (1777.7 
mm). The ensemble means rainfall value for the catchment 
shows an increase of roughly 2299.2 mm. The annual rainfall 
projected by different GCM models ranges from 3555.7 mm 
(ACCESS1.0 GCM MODEL) to 4317.1 mm (MPI-ESM-
LR GCM MODEL). During the monsoon season, all of the 
projections show similar variations. 

As shown in Table 3, there are only minor variations in 
CV, which are 11 % and 12 % for the annual and monsoon 
seasons respectively, compared to 48.5 % and 58.9 % for 
the rainfall data of the baseline period, implying that varia-
bility will be reduced in the near future. Further, the CV of 
post-monsoon rainfall is 23.55 % which is higher than that 
of monsoon rainfall at 11.96%, implying that post-monsoon 
rainfall has more interannual variability than monsoon rain-
fall. Considering the above findings the use of Multi-Model 

Table 2: Regression analysis of rainfall data (a) Summer, (b) Monsoon, (c) 
Post Monsoon (d) Winter. 

Season Regression Equation R2

Summer y = 1.21x + 228.27 0.0104

Monsoon y = 2.77x + 3503.8 0.0032

Post monsoon y = -1.54x + 297.75 0.0429

Winter y = 0.0093x + 2.95 0.0012

Annual y = 2.46x + 4038.7 0.0023
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Fig. 4: Seasonal mean rainfall, standard deviation, and their corresponding CV.



2206 Shilpa A. Veerabhadrannavar and B. Venkatesh

Vol. 21, No. 5 (Suppl), 2022 • Nature Environment and Pollution Technology  

 

0

10

20

30

40

0
1000
2000
3000
4000
5000

%Ra
in

fa
ll 

(m
m

)

GCM Models

Mean (mm) Standard deviation (mm) CV (%)

Fig. 5: Annual mean rainfall, standard deviation, and their corresponding CV.

Table 3: Climate statistics for near future bias-corrected GCM projections (2021-2050). The values in brackets represent the absolute change in the Bias 
corrected GCM data with reference period, i.e. IMD gridded data for the period (1991-2020).

  Mean (mm) SD (mm) CV (%)

IMD Summer 119.34 57.50 48.18

Monsoon 1451.36 854.60 58.88

Post monsoon 193.11 104.73 54.23

Winter 4.62 5.73 123.94

Annual 1777.69 861.95 48.49

ACCESS1.0 Summer 192.3 (61.2) 117.3 (104.1) 61 (26.7)

Monsoon 3114.6 (114.6) 1207.3 (41.3) 38.8 (-34.2)

Post monsoon 231.2 (19.8) 137.2 (31.1) 59.4 (9.6)

Winter 5.9 (27.6) 9.3 (62.3) 157.3 (27)

Annual 3555.7 (100.1) 1245 (44.5) 35.1 (-27.7)

CNRM-CM5 Summer 276.1 (131.4) 237.8 (313.6) 86.2 (79)

Monsoon 3617.1 (149.3) 785 (-8.2) 21.8 (-63)

Post monsoon 300.5 (55.7) 183.4 (75.2) 61.1 (12.7)

Winter 3.1 (-33) 4.4 (-23.3) 143 (15.4)

Annual 4202.6 (136.5) 839.1 (-2.7) 20 (-58.8)

GFDL-CM3 Summer 323.6 (171.2) 268.6 (367.2) 83.1 (72.5)

Monsoon 3687.9 (154.1) 832.2 (-2.7) 22.6 (-61.7)

Post monsoon 270.2 (40) 131.4 (25.5) 48.7 (-10.2)

Winter 1.4 (-69.8) 1.8 (-68.6) 123.3 (-0.6)

Annual 4285.8 (141.1) 826.3 (-4.2) 19.3 (-60.2)

MPI-ESM-LR Summer 154.8 (29.8) 127.5 (121.8) 82.4 (71.1)

Monsoon 3851 (165.4) 897.8 (5.1) 23.4 (-60.3)

Post monsoon 303.4 (57.2) 201.7 (92.6) 66.5 (22.7)

Winter 2.7 (-41.7) 3.1 (-46) 115.9 (-6.5)

Annual 4317.1 (142.9) 927.5 (7.7) 21.5 (-55.7)

NorESM1-M Summer 288.7 (142) 204.7 (256.1) 70.9 (47.2)

Monsoon 3463.5 (138.7) 709.4 (-17) 20.5 (-65.2)

Post monsoon 264.1 (36.8) 165.6 (58.2) 62.8 (15.9)

Winter 2.6 (-43.8) 2.8 (-51.2) 108.8 (-12.3)

Annual 4023.8 (126.4) 856.4 (-0.7) 21.3 (-56.1)

Ensemble Summer 247 (107) 102.9 (79) 41.7 (-13.4)

Monsoon 3546.8 (144.4) 424.4 (-50.3) 12 (-79.6)

Post monsoon 273.8 (41.8) 64.5 (-38.4) 23.6 (-56.5)

Winter 3.1 (-33) 2.4 (-58.1) 76.4 (-38.4)

Annual 4076.9 (129.3) 448 (-48) 11 (-77.3)
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Ensemble (MME) data is encouraged as the process will 
reduce the uncertainties involved in individual GCM data 
(Ahmed et al. 2019, Colorado-Ruiz et al. 2018, Dai et al. 
2001, Shiru et al. 2020, Wang et al. 2018).

The standard deviation of rainfall data projected by 
different GCM models under consideration varied from 826.3 
mm (GFDL-CM3 GCM MODEL) to 1245 mm (ACCESS1.0 
GCM MODEL), and the coefficient of variation varied 
from 19.3 mm (GFDL-CM3 GCM MODEL) to 35.1 mm 
(ACCESS1.0 GCM MODEL). Considering the ensemble of 
GCM values reduces the standard deviation of rainfall data 
for the period 2021-2050 to 448 mm, as shown in Fig. 5. Even 
the coefficient of variation is lowered to 11 %, along with 
the standard deviation. As a result, the rainfall variability of 
the projected data is reduced.

Monthly Distribution of Average Precipitation  
(2021-2050)

Kokkarne catchment receives annual precipitation ranging 
from 3201.82 mm to 5141.29 mm, with an average of 
4069.38 mm. The highest monthly average precipitation 
is received during July (1230.73mm) (Krishnakumar et al. 
2009), contributing 30.24 % to annual precipitation; August 
and September months with precipitation of 1018.39 mm 
and 387 mm ranked second and third, contributing 25.02 
% and 9.51 % to annual precipitation, respectively. July is 
found to be the wettest month in the catchment as reported 
by other similar studies (Bhan et al. 2015, Singh & Mishra 
2014, Zhang et al. 2019).

The monsoon season receives the highest precipitation of 
all the seasons, it is preferable to locate a feasible mechanism 
for storing extra precipitation in a reservoir, rather than 
letting it runoff or evaporate. A guideline for groundwater 

recharging might be constructed using this extra precipitation 
during the monsoon. With minimal extraction during the 
monsoon and by using groundwater recharging techniques, 
good groundwater can be conserved. It would be difficult 
to grow post-monsoon crops without additional irrigation 
since post-monsoon precipitation is more unpredictable 
and variable.

Decadal Analysis of Rainfall and Discharge 

The box plot analysis of rainfall and discharge has been 
shown in Fig. 6. The rainfall is projected to decrease from 
4164.64 mm in 2021-30 to 3999.02 mm in 2031-40 then 
projected to increase to 4157.16 mm in 2041-50. Similarly, 
the discharge output obtained from the simulation of the 
SWAT model was also analyzed and it was found that rainfall 
is projected to decrease from 218.40 m3.sec-1 in 2021-30 to 
208.40 m3.sec-1 in 2031-40 and then projected to increase 
to 218.92 m3.sec-1 in 2041-50.

The increase in the discharge is correlated with an 
increase in the rainfall of the catchment as reported by studies 
like (Chiew et al. 1995, Fapeng et al. 2013; Miller & Russell 
1992, Pfister et al. 2004, Van Steenbergen & Willems 2012). 

CONCLUSIONS 

The purpose of this study was to use regression analysis of 
the rainfall data for the catchment to detect the annual and 
seasonal rainfall patterns. The rate of change of the rainfall 
was obtained by fitting the linear regression line, and the 
slope of the simple least-square regression expressed the 
trend. The current study used linear regression analysis, a 
significant parametric model that can be utilized to construct 
functional correlations between variables, to examine the 
rainfall trend for the study area. Furthermore, from 2021 to 
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2050, the current study brings to light the impact of global 
climate change on rainfall and discharge patterns in the 
Kokkarne catchment.

Following are a few of the observations from the present 
research.

 1. Except for the post-monsoon season, the trend m (the 
slope) in the equation y = mk + c of regression analysis 
revealed a positive trend for all three seasons.

 2. Considering the Ensemble mean of rainfall data helps 
to reduce the uncertainty in the data.

 3. The standard deviation of ensembled rainfall data has 
reduced to 448 mm.

 4. CV of ensembled rainfall data has reduced to 11 mm.

 5. July month is receiving the highest monthly average 
precipitation of 1230.73 mm.

 6. The increase or decrease in the rainfall of the catchment 
is reflecting the increase or decrease in the discharge of 
the catchment.

Climate extreme events have an impact on farmers in 
the region and their agricultural activities with the increase 
in rainfall variability. The government may formulate 
climate-friendly water resource policies as a result of the 
findings of this study, which will promote self-sufficient and 
economical agricultural practices.
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