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	       ABSTRACT
The objective of this study is to provide a thorough assessment of soil erosion in the 
Hirshabelle state from 2020 to 2023, utilizing the Revised Universal Soil Loss Equation 
(RUSLE) and advanced geospatial technologies, particularly Google Earth Engine, to guide 
sustainable land management strategies. The study integrates multiple datasets, including 
CHIRPS for rainfall measurement, MODIS for land use analysis, and a digital elevation model 
for slope calculation, to offer a comprehensive understanding of the factors contributing to 
soil erosion. The rainfall erosivity (R) factor is calculated using CHIRPS data, while the soil 
erodibility (K-factor) is derived from the soil dataset. The topographic condition (LS-factor) 
is computed using the digital elevation model, and the cover-management (C) and support 
practice (P) factors are determined from the NDVI and land use data, respectively. The 
findings reveal considerable spatial variation in soil erosion across the Hirshabelle state. The 
results are categorized into five levels based on the severity of soil loss: very low (<5), low (5-
10), moderate (10-20), high (20-40), and very high (≥40). While areas classified under “very 
low” soil loss are dominant, indicating relatively stable soils, regions under “very high” soil 
loss signal potential land degradation and the need for immediate intervention. Furthermore, 
the study revealed the intricate interplay of slope, vegetation, and land use in influencing soil 
erosion. Areas with steeper slopes and less vegetation were more susceptible to soil loss, 
emphasizing the need for targeted soil conservation measures in these regions. The land 
use factor played a crucial role, with certain land uses contributing more to soil erosion than 
others.

INTRODUCTION

Soil erosion in Somalia is one of the most concerning 
issues, and it affects the environment, society, and economy 
(Oshunsanya & Nwosu 2017). A lack of vegetation in 
Somalia triggers another kind of degradation of the land, 
which was shown through the sources (Omuto et al. 2011). 
Soil erosion is the dominant cause of land degradation 
in today’s sub-Saharan Africa, affecting agricultural 
productivity on a large scale (Karamage et al. 2016). Soil 
erosion is very common and causes significant damage, 
according to several studies and research conducted in 
several areas of the world (Bou-imajjane & Belfoul 2020). 
It has become a serious and sustained crisis in Somalia. 
Further, the issue has some devastating implications for the 
natural environment and agriculture (Yan et al. 2022). The 
loss of vegetation is one of the reasons for the loss of soil 
in Somalia (Omuto et al. 2011). Thus, the study is meant to 
understand the extent and impact of soil erosion in Somalia. 

The researchers look forward to figuring out the causes 
and impacts of the same. A suitable approach to achieve 
the target is to characterize the dynamics of the vegetation 
cover. Then, the researchers seeded up to get the complete 
details and the value of the rate of land degradation due to 
soil erosion in Somalia. Soil erosion in Somalia is driven 
by the removal of vegetation cover, unsuitable land use 
practices, and urbanization, significantly exacerbating land 
degradation across the country (Nur et al. 2024). Such issues 
are often analyzed through advanced models and remote 
sensing tools, as demonstrated by the application of RUSLE 
to measure erosion and sedimentation (Alexiou et al. 2023). 
In East Africa, the impacts of climate change on soil erosion 
have been highlighted using convection-permitting climate 
models, emphasizing the region’s vulnerability to increased 
erosion rates due to shifting rainfall patterns (Chapman 
et al. 2021). Remote sensing and geographic information 
systems (GIS) are critical for evaluating soil loss, sediment 
yield, and watershed prioritization, even in data-poor regions 
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(Dhaloiya et al. 2021; Patil et al. 2021). High-resolution 
satellite missions like Sentinel-2 offer valuable data for 
assessing vegetation and soil conditions, facilitating erosion 
monitoring and management strategies (Drusch et al. 2012). 
Additionally, indices like the Normalized Difference 
Vegetation Index (NDVI) can estimate sediment production 
and contribute to understanding vegetation’s protective role 
against erosion (Lense et al. 2020).

The integration of these methodologies underscores the 
importance of modern tools and models in managing erosion, 
with specific emphasis on adapting practices to mitigate 
nutrient losses and ensure sustainable land management in 
vulnerable regions like Somalia (Chen et al. 2017; Yebra 
et al. 2008).

Erosion of soil is a vital environmental issue that affects 
multiple sites across the world (Bou-imajjane & Belfoul 
2020). Soil erosion means the removal of soil in excessive 
quantity by various agents of erosion. Soil degradation can 
assume the following forms: water erosion, wind erosion, 
mass motion, salt excess, physical degradation, biological 
degradation, and chemical degradation (Abidin et al. 
2021). Soil erosion can lead to a decrease in the health and 
productivity of agricultural lands. It is also considered to 
be a major threat to the natural environment (Ailincăi et 
al. 2011). When soil erosion is not wisely controlled and 
prevented, It results in significant damage to agriculture and 
ecosystems. The decline in soil fertility is attributed to soil 
erosion. Erosion causes a decline in productivity as erosion 
leads to physical, chemical, and biological degradation 
(Gaonkar et al. 2024). Soil erosion acts as the causative 
factor and the outcomes of land degradation (Afriyie et 
al. 2020). It is important to remember that soil erosion can 
happen in plenty of different ways. Splash erosion, sheet 
erosion, rill erosion, and gully erosion all take part in soil 
erosion (Vrieling et al. 2005). These processes are mostly 
caused by deforestation, urbanization, and the intensification 
of agriculture. Also, the worthiest land degradation problem 
in the whole world is water-induced soil erosion (Vrieling 
et al. 2005). This is a severe concern that needs watershed 
management interventions to avoid further stint and protect 
ecosystem health (Tegegne et al. 2022). 

As stated in various study findings, soil erosion directly 
impacts its fertility. Erosion in agriculture production, 
infrastructure, and water quality has various negative 
ecological effects. The outcome of the process of water erosion 
causes a severe reduction in the fertility of the soil by physical, 
chemical, and biological degradation (Ailincăi et al. 2011). To 
produce valuable insights and improve our understanding of 
the critical factors that govern erosion and sediment transport 
to different places, either stronger or weaker than ever 

(Tegegne et al. 2022). Soil erosion is a major environmental 
issue with crop-specific afflicts and land degradation (Ailincăi 
et al. 2011). Concentrating on suitable land management 
practices and constant monitoring of susceptible areas is 
important to prevent and control erosion (Puente et al. 2019). 
Implementing appropriate management strategies is critical, 
with severe soil erosion and its outcomes. To make this 
happen, efforts to preserve the soil must be undertaken once 
the severity of the issue is well comprehended (Tamene et 
al. 2006). Wischmeier & Smith’s (1978) Universal Soil Loss 
Equation (USLE) was developed back in 1978 (Wischmeier 
& Smith 1978). It is one empirical model of soil erosion. It 
is used by most technicians to predict soil loss due to water 
erosion (Vezina et al. 2006, Trinh 2015, Nguyen 2011, Mc 
Cool et al. 1987). Remote sensing and GIS simulation are 
utilized to estimate and map the annual water erosion rate 
spatial pattern utilizing the Revised Universal Soil Loss 
Equation (RUSLE) (Renard et al. 1997). Earlier research into 
soil erosion forces had primarily focused on empirical models, 
physical properties-based models, nuclear tracing, and then 
spatial distributed multivariate models (Wang et al. 2016). 
The RUSLE model is a very easy-to-understand formula, 
needs only a few parameters, and is very accurate compared 
to other models (Wang & Zhao 2020). As viewed from the 
literature, this model is widely used and provides excellent 
results in predicting soil erosion (Stathopoulos et al. 2017, 
Rocha & Sparovek 2021, Wang & Zhao 2020). Previous 
studies have shown the application and widespread use to 
estimate cropland soil erosion at the watershed, regional, and 
global scales (Cui et al. 2022). It can also find the clear-cut 
cost and feasibility of controlling soil erosion (Orchard 2021). 
The accuracy with which the RUSLE model could predict 
the rate and spatial distribution of soil erosion using remote 
sensing data had been estimated in a study in China (Hua et 
al. 2019). Making the remote sensing data included in the 
RUSLE model to determine the rate of erosion of soil is user-
friendly for studying the spatial distribution of erosion of soil 
(Orchard 2021). The above-mentioned studies, including the 
GIS and remote sensing techniques, have provided elaborate 
data about the surface and thereby had higher accuracy along 
with the spatial resolution for the estimation of soil erosion. 
These are the studies that state that GIS and remote sensing 
give an upper hand in getting a detailed estimation of soil 
erosion in a specific land area (Chala 2019). By integrating 
the RUSLE model with Remote sensing and GIS mapping, 
researchers developed a way to estimate soil loss and plan 
appropriate soil conservation strategies. Thus, keeping in mind 
the aforementioned discussion, this study aims to measure 
the amount of soil loss from the Hirshabelle area using the 
RUSLE model with the integration of GIS and remote sensing 
techniques.
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MATERIALS AND METHODS

Study Area

Hirshabelle, officially known as Hirshabelle State of Somalia 
(Latitude: 3.8793° N, Longitude: 45.9040° E), is a Federal 
Member State in south-central Somalia (Fig. 1). It has a 
border with the Galmudug State in the north, the Southwest 
State of Somalia and Banadir region to the south, Ethiopia to 
the west, and the Indian Ocean to the east (Wikipedia 2018). 
The state is encompassed by two regions: Hiraan and Middle 
Shebelle (European Union Agency for Asylum 2011). 
Furthermore, the region confronts adverse environmental 
challenges, including flash flooding and short-lived, seasonal 
flooding. The most likely flash flood areas are Beledweyne, 
Jalalaqsi, Bulo Burde, Mahaday, and Jowhar. These floods 
are intense but brief and occur seasonally (United Nations 
Environment Programme 2022).

RUSLE Model

Using a combination of remote sensing and GIS, the RUSLE 
model was utilized to map and identify soil erosion risk 
regions in Hirshabelle and calculate the mean annual soil 
loss rate (t/ha/year) on a cell-by-cell basis. The following 
was constructed and discussed after raster maps of each 
RUSLE parameter obtained from several data sources. This 
model works on all continents where soil erosion due to 
water erosion is an issue (Laflen et al. 2003). The model 
can be expressed as: 

	 A= R×K×LS×C×P

Where, A=average soil loss per unit of area (t/ha/year); 
R=rainfall erosivity factor (MJ mm ha−1 h−1 y−1); K=is the 
soil erodibility factor (t h MJ−1 mm−1); LS=topographic factor 
(dimensionless) including slope length (L) and steepness 
(S) factors; C=cover management (dimensionless); and 
P=support (or conservation) practice factor (dimensionless). 
The schematic representation of the RUSLE model is 
presented in Fig. 2. 

Rainfall Erosivity (R-factor)

The Rainfall Erosivity (R-factor) is a key parameter in the 
RUSLE (Revised Universal Soil Loss Equation) model, 
representing the impact of rainfall intensity on soil erosion 
(Wagari & Tamiru 2021). It is calculated by multiplying 
the total kinetic energy of a rainfall event by its maximum 
30-minute intensity. This factor serves as an index for 
assessing the potential erosive power of rainfall, enabling 
predictions of soil erosion risks (Mikhailova et al. 1997). 
Accurate computation of the R-factor helps to estimate 
and manage soil erosion in areas where there is a lack 
of time-series precipitation data. In such cases, monthly 
satellite precipitation data can be used to determine 
average annual erosivity (Pandey & Gautam 2015). Thus, 
estimating precipitation erosivity is crucial in data-scarce 
regions and can be achieved using various methods,  
leveraging precipitation erosivity data and satellite-based 
precipitation.
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Soil Erodibility (K-factor)

The K-factor is critical in calculating sediment detachment 
and distribution on a region’s surface (Veith et al. 2017). It 
represents the resistance of soil to erosion when impacted 
by raindrop impact and concentrated flow, as defined by the 
RUSLE model (Bayramin et al. 2007). This factor reflects soil 
erodibility and helps quantify how changes in ecosystems or 
land management practices can reduce erosion susceptibility. 
In the RUSLE model, the K-factor estimates soil erosion 
potential based on various soil parameters, including 
soil texture, organic matter, and water content. Several  
modified algorithms exist to calculate the soil erodibility 
factor for different soils at specific sites (Rodrigo-Comino 
et al. 2020).

Slope Length and Steepness Factors (LS)

Slope length and steepness are the main topographical factors 
affecting soil erosion. According to Ozsoy & Aksoy (2015), 
erosion rates-whether water or soil erosion-are directly 
dependent on flow velocity. Erosion occurs at a higher rate 
on longer slopes (Dudiak et al. 2019). Steeper slopes gain less 
energy from water flowing down, leading to more significant 
soil displacement. In the RUSLE model, the LS factor is a 
dimensionless parameter that identifies variations in soil 
erosion intensity proportional to slope length and steepness. 
This factor effectively predicts and controls erosion threats 
by considering the slope’s impact (Gashaw et al. 2017). 
Studies, for example, Prasannakumar et al. (2012), highlight 
the importance of the LS factor in understanding soil erosion 
risk based on slope characteristics.

Land Cover Management Factor (C-factor)

The C-factor in the RUSLE model is an important parameter 
that measures soil loss based on land cover, crops, and 
treatment practices (Gashaw et al. 2017). It is a dimensionless 
quantity indicating the reduction in soil loss per unit area due 
to specific land use practices. Monitoring or estimating soil 

loss due to plant cover and residual matter and evaluating 
efficiency levels in relation to farmland management are 
necessary for determining potential mitigation methods and 
durations (Saha 2018, Zhao et al. 2012). Different types of 
vegetation, structural canopies, and management strategies 
significantly influence soil loss and erosion rates, as defined 
by the C-factor.

Support Practice Factor (P-factor)

The P-factor in the RUSLE model represents the effectiveness 
of soil conservation practices in reducing erosion. It is 
calculated by dividing soil loss from a particular support 
practice by the soil loss from up-and-down slope cultivation 
(Renard et al. 1997).

Data for Estimation of Soil Erosion by RUSLE Model

Rainfall and Runoff Erosivity factor (R-factor), Soil 
Erodibility factor (K-factor), Topographic factor (LS-factor), 
Crop management factor (C-factor), and Support practice 
factor (P-factor) were the factors for the estimation of soil 
erosion by RUSLE model. The R-factor was calculated using 
the total precipitation data derived from CHIRPS for the 
particular study period. The output finally obtained was first 
widely multiplied by 0.363, and then 79 was added to convert 
the total rainfall amount given into an erosive factor. Similarly, 
the K-factor was calculated from the regional soil dataset. 
The LS factor was calculated using the DEM data. The slope 
percent was calculated, and the LS factor was then calculated. 
The C-factor was calculated using the NDVI (Normalized 
Difference Vegetation Index) derived from the Sentinel-2 data. 
Lastly, the P-factor was estimated using the MODIS land-use 
and land-cover dataset, and the slope percent was calculated.

RESULTS

Rainfall Erosivity (R-factor)

The CHIRPS (Climate Hazards Group InfraRed Precipitation 
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specific values of 0, 0.02, 0.034, 0.042 and 0.05. These values 
of the K-factor provide a measure of how susceptible the soil 
is to erosion, and the higher the value, the more erodible the 
soil; in other words, higher K-values indicate places where 
the soil is more susceptible to erosion. Therefore, these areas 
are anticipated to require soil conservation procedures to stop 
considerable loss of soil from erosion. In contrast, for areas 
of lower K-values, less erosion control methods can be used. 
The K-factor map of the Hirshabelle state is given in Fig. 4.

Slope Length and Steepness Factors (LS-factor)  

The slope was calculated from the “elevation” attribute of 
the digital elevation model (DEM). Then, the slope was 
converted from degrees to percent using the following 
formula:

	 Slope (%) = tan (slope in degrees) × 100. 

Then, the LS factor was calculated using the following 
formula (Desmet & Govers 1996):

	LS = (Slope 0.53 + Slope2 0.076 + 0.76) × √ (500/100) 

This equation is used to find the potential soil erosion 
with the combined impact of slope steepness and the 
influence of slope length. In the LS equation, (Slope × 0.53 + 
Slope2 × 0.076 + 0.76) refers to the effect of slope on erosion, 
including both linear and quadratic effects of slope, whereas 

with Station) dataset was used for the measurement of 
the R-factor. The CHIRPS dataset was filtered for the 
‘precipitation’ band for the particular period of 2020 to 2023. 
The next step was clipping the data to the boundaries of the 
Hirshabelle state. The R-factor will ascertain the erosive 
force of rain and is calculated as follows:

 R = Precipitation × 79 + 0.363

This R-factor has been applied to the RUSLE model 
mentioned by Panagos et al. (2017). The R-factor map 
of Hirshabelle state is depicted in Fig. 3. For the state the 
R-factor ranged from 181.535 to 484.344. Hence, these 
values showed the potential rate of soil loss to rainfall-driven 
erosion in the Hirshabelle state. The higher the R-factor 
value, the higher the susceptibility of the area to soil erosion 
by rainfall.

Soil Erodibility (K-factor) 

The K-factor aims to determine the susceptibility of the soil 
particles to detachment and transport by the action of rainfall 
and runoff. Several soil values to assess the K-Factor were 
considered. The special formula and the values used seem 
to be region-specific, and these values seem to be based 
on the local soil properties. The values of the K-factor 
were determined by Wischmeier’s procedure (1976). The 
estimated K factor value ranged from 0 to 0.05. We obtained 
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Fig. 3: Rainfall erosivity (R-factor) map of Hirshabelle state. 
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√(500/100) represents the interference of the slope length. 
The square root in this function also represents a nonlinear 
relationship. Fig. 5 shows the steepness of the landscape 
slopes of the different parts of the study area, which varies 
from 0 (flat area) to 9.4642 (extremely steep area). 

The LS factor map suggests that soil is likely to erode 
due to both steepness and slope length. The values of the 
LS factor ranged from 1.69941 (low erosion potential) to 
28.1295 (high erosion potential). The map of the LS factor 
of Hirshabelle state is given in Fig. 6. 
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Fig. 4: Soil erodibility (K-factor) map of Hirshabelle state. 
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Normalized Difference Vegetation Index (NDVI)

The current study focuses on the Normalized Difference 
Vegetation Index (NDVI) and the C-factor in erosion 
smoothing facts. These two indispensable metrics are 
analyzed for the environmental and agricultural study. The 
Normalized Difference Vegetation Index (NDVI) is the 
most important vegetation index that is capable of assisting 
the studying scientists in estimating the vegetation health, 
biomass, and canopy of the land site (Li et al. 2020). It is 
also a straightforward graphical indicator of the measurement 
that consists of the metrics from the distant remote sensors. 
This index can provide the measurement of whether the 
categories that are considered for studies have resulted in 
any live green that is essential (Pahlevan et al. 2022). The 
calculation of NDVI is computed utilizing the following 
formula (Sarmin et al. 2023):

	 NDVI = (NIR - RED) / (NIR + RED)

The NDVI or Normalized Difference Vegetation Index 
is calculated using Band 8 (NIR) and Band 4 (RED) of 
the Sentinel-2 satellite (Sarmin et al. 2023). The ratio of 
these bands is the formula to get the NDVI and helps in 
understanding the health and coverage of vegetation (Reiche 
et al. 2018). Through the understanding of environmental 
landscapes provided by NDVI, soil conservation, and 
sustainable agriculture can be planned more accurately 
(Zhang et al. 2016). Hence, two crucial tools in environmental 
and agricultural studies are NDVI and the C-factor. The 

outcome of the NDVI image after the clipping for Hirshabelle 
state was used to find the median value, and the values of 
NDVI ranged from -0.2 to 0.3. The negative value of NDVI 
corresponds to water, i.e., values closer to -1. Whereas close 
to zero (i.e., (-0.1 to 0.1)) relates to barren or open areas of 
rock, sand, or snow, and the higher value of NDVI (0.3 to 
0.8) has temperate or tropical rainforests or areas with dense 
vegetation growth. The map of NDVI of Hirshabelle state 
is given in Fig. 7.

Vegetation Cover Management (C-factor)

C-factor represents the effect of cropping and management 
practices on erosion rates. The code is to calculate the C factor 
using NDVI derived from Sentinel-2 data. The presence of 
green vegetation is represented by the NDVI, as derived from 
the Sentinel-2 data. The specific formula seems to be derived 
from the transformation of the NDVI values, which is a com-
monly applied technique of the remote sensing study based on 
the C-factor Model. Fig. 8 represents the C-factor map of the 
study area. The values of the C-factor ranged from 0 to 1. The 
C-factor is the ratio between the erosion magnitude of a certain 
area with specific vegetation cover and crop management to 
the erosion magnitude of identical soil without vegetation. 
Hence, the understanding of NDVI and C-factor analysis can 
give more insight into the health of vegetation and the risk of 
soil erosion. The NDVI value shows substantial vegetation 
cover, and the C-factor model suggests that the erosion rate 
is significant because of this vegetation.
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Fig. 5: Slope map of Hirshabelle state. 

The LS factor map suggests that soil is likely to erode due to both steepness and slope length. 

The values of the LS factor ranged from 1.69941 (low erosion potential) to 28.1295 (high 

erosion potential). The map of the LS factor of Hirshabelle state is given in Fig. 6.  

 
Fig. 6: LS factor map of Hirshabelle state. 
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Support Practice (P-factor)

The major goal of the P-factor is to account for the effect 
of erosion-control practices on soil loss. Based on the type 
of land cover from MODIS data, the slope determines the 

P-factor. The specific rules that are followed are expected to 
be region-specific and may be based on local land management 
practices (Dabney et al. 2012). The P-factor is the ratio of soil 
loss for a specific support practice to soil loss for up-and-down 
slope cultivation on the same type of land cover. It quantifies 
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Fig. 7: NDVI map of Hirshabelle state. 
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Fig. 8: C-factor map of Hirshabelle state. 
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(Fig. 9) range from 0.6 to 1. The lower P-factor values nearer to 0.5 indicate that the 

conservation practices are highly effective in preventing soil erosion. While higher P-factor 

values, approximately up to 1, indicate less effective practices in place or no erosion control 
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Fig. 8: C-factor map of Hirshabelle state.
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the effectiveness of the various conservation practices like 
contour plowing or terracing. The P-factor analysis of the study 
area provides valuable information about the effectiveness of 
soil conservation practices in the area. The P-factor values of 
the study area (Fig. 9) range from 0.6 to 1. The lower P-factor 
values nearer to 0.5 indicate that the conservation practices 
are highly effective in preventing soil erosion. While higher 
P-factor values, approximately up to 1, indicate less effective 
practices in place or no erosion control measures are in place 
in the area.

Soil Loss 

Soil loss was estimated using the Revised Universal Soil 
Loss Equation (RUSLE). The final soil loss was calculated 
by multiplying R, K, LS, C, and P factors. The mean values 
of the factors of the RUSLE model are presented in Table 1.

The soil loss analysis offers a comprehensive view of 
areas at risk of erosion within the defined area. The soil 
loss map illustrates the varying degrees of soil loss, with 
areas falling into one of five categories: “very low,” “low,” 
“moderate,” “high,” and “very high,” following Housseyn 
et al. (2021). The distribution of areas according to soil loss 
classes is presented in Table 2 and depicted in Fig. 10. 

DISCUSSION

The estimation of the R-factor, starting from 181.535 to 
a high of 484.344 (Fig. 3), suggests the variability of the 

potentiality of soil loss because of rainfall-triggered erosion. 
The better R-factor values point in the direction of areas that 
are greater at risk of soil erosion due to rainfall, suggesting 
the need for focused interventions in those regions to 
mitigate erosion (Fenta et al. 2020). Similarly, the computed 
K-factor values, starting from 0 to 0.05 (Fig. 4), offer 
insights into the soil’s susceptibility to erosion. The higher 
K-values endorse areas with extra erodible soils, indicating 
the need for particular soil conservation measures to save 
excessive soil loss (Angima et al. 2003). Conversely, regions 
with lower K-values, signifying less erodible soils, may 
additionally require less extensive conservation practices. 
The LS-factor map (Fig. 5 and Fig. 6) highlights the capacity 
for soil erosion because of the combined impact of slope 
period and steepness. This issue is of unique importance, 
as regions with a high LS factor represent regions with 
a higher chance of soil erosion, underlining the need for 
tailored erosion management techniques in such regions 
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Fig. 9: P-factor map of Hirshabelle state. 
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(Moses 2017). The NDVI evaluation (Fig. 7) and derived 
C-factor (Fig. 8) provide valuable insights into the country 
of plant life and its position in soil erosion in the high 
NDVI and C-factor derived from NDVI, presenting massive 
protection in opposition to soil erosion (Kogo et al. 2020). 
The P-factor values, ranging from 0.6 to 1 (Fig. 9), offer an 
indication of the efficacy of conservation practices within 
the vicinity. Lower P-factor values advocate that modern 
conservation practices are powerful at stopping soil erosion, 
while better values represent areas in which more efficient 
erosion management measures may also need to be carried 
out (Amsalu & Mengaw 2014). The final soil loss estimation 
derived from the product of R, K, LS, C, and P factors offers 
a comprehensive representation of the areas at risk of erosion 
within the Hirshabelle state (Fig. 10). The categorization of 
soil loss into “very low,” “low,” “moderate,” “high,” and 
“very high” provides a clear understanding of the severity 
of soil erosion in different areas (Yesuph et al. 2021). The 
study assessed soil erosion risks in northwest Somalia, 

revealing that most of the area faces moderate erosion risk. 
The northern region, including Bossaso and other weather 
stations, demonstrates low erosivity risk due to lower 
annual precipitation. In contrast, southern regions, despite 
their steep slopes, experience higher erosion risk. These 
findings highlight the critical influence of precipitation and 
topography on soil erosion in the Hirshabelle state (Nur et 
al. 2024).

CONCLUSIONS

An extensive study on soil erosion in the Hirshabelle state 
offers vital insights into the various reasons that trigger soil 
loss. The primary factors that stimulate soil loss in a region 
are, namely, erosivity of rainfall, erodibility of soil, length, 
and steepness of slopes, the cover of vegetation, and support 
practices. Soil loss risk for the Hirshabelle area is estimated 
using a Revised Universal Soil Loss Equation (RUSLE). 
CHIRPS, MODIS, Sentinel-2, and a local soil dataset are 
used to predict soil loss risk and erosion for the area. Results 
from the NDVI and C-factor study show the importance of 
the presence of vegetation in the prevention of soil erosion. 
The study also brings out the significance of increasing and 
keeping vegetation safe to protect soil. The P-factor study 
shows that the soil conservation practices carried out in the 
area are quite efficient. This study also helps improve these 
practices further. The satellite data combined with the soil 
runoff models indicate that it offers a valuable and solid 
foundation for policymakers to make crucial choices about 
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Table 2: Distribution of soil loss classes along with their respective areas. 

Categories Area in hectare Proportion of the total area (%) 

Very low (Soil loss < 5) 1,005,247.882 19.11% 

Low (Soil loss  5-10) 3,001,216.756 57.04% 

Moderate (Soil loss 10-20) 1,089,858.46 20.71% 

High (Soil loss 20-40) 150,108.38 2.85% 

Very high (Soil loss ≥ 40) 14,884.63 0.28% 

 

 
Fig. 10: Soil loss map of Hirshabelle state. 
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land. The changes associated with soil loss/readiness help 
to understand and study the areas that are prone to erosion. 
Since soil is the most important resource and supporting 
factor, conservation practices will keep the land productive 
and healthy. Thus, taking measures to prevent soil loss will 
encourage sustainable land use. 
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