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ABSTRACT

The Super-SBM model was used first to assess the energy efficiency of 30 Chinese provinces from 
2012 to 2017. After that, an energy efficiency spatial correlation test was conducted, and finally, the 
influencing elements of energy efficiency were analyzed using a geographic panel model. The findings 
show that the amount of regional economic development has a substantial positive impact on energy 
efficiency, whereas the level of regional urbanization and the severity of environmental restrictions 
have a considerable negative impact on energy efficiency in China’s provinces. Other regions’ energy 
structure and technical innovation have a substantial positive spillover effect on the region’s energy 
efficiency, whereas other regions’ economic development and foreign direct investment have a 
significant negative spillover effect on the region’s energy efficiency.   

INTRODUCTION 

The development and utilization of energy are required for 
both continual economic growth and continuous societal 
development. Energy is a crucial component of societal 
production. Energy usage is steadily growing as industriali-
zation progresses. According to a report by the International 
Energy Agency, worldwide energy consumption will increase 
by 37% by 2040. Although sufficient and stable energy input 
can maintain national energy security and promote healthy 
economic development, energy shortage is one of the main 
challenges in the economic and social development of de-
veloping countries. As the largest developing country in the 
world, China’s energy consumption has shown explosive 
growth along with its economic development. In 2019, the 
total energy consumption reached 4870 MTCE, and the exter-
nal dependence on natural gas and oil has exceeded 40% and 
70%. Clean energy is relatively scarce, and the long-lasting 
energy crisis will cause more serious development problems 
and bring a heavy burden to China. The coal-based energy 
structure and crude economic expansion have frequently 
broken through the bottom line of environmental carrying 
capacity throughout the past 40 years of reform and opening 
up, and pollutant emissions significantly surpass the global 
average.

There is a serious shortage of energy resources in Chi-
na, and the environmental carrying capacity is close to the 

upper limit. It is necessary to slow down the growth rate of 
total energy demand, accelerate structural transformation, 
promote the formation of new ways of green and circular 
development, improve energy consumption structure, and 
make energy development in the direction of low-carbon 
and clean energy. The energy issue is one of the bottlenecks 
restricting the sustainable development of China’s economy 
and society. It’s worthwhile to consider and investigate how 
to make the most of limited energy. For China to accomplish 
ecological civilization construction and high-quality econom-
ic development, this is critical.  Therefore, the evaluation of 
energy efficiency and the study of its influencing factors have 
become the focus of attention of many scholars.

Past Studies

At present, research on energy efficiency at the inter-pro-
vincial is mainly focused on energy efficiency calculations 
and influencing factors.

For the study of energy efficiency measurement, the data 
envelopment analysis (DEA) model is the current mainstream 
method. It does not need to consider the influence of dimen-
sions and weights, nor does it need to set the production 
function in advance. It can evaluate complex systems with 
multiple inputs and multiple outputs. Wang et al. (2018) have 
used the DEA method to measure energy efficiency. With 
the increasingly serious pollution problem, to measure and 
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evaluate energy efficiency more scientifically and rationally, 
more and more scholars have begun to consider undesired 
output in the DEA model. By weighting the emissions of the 
“three industrial wastes,” Zhou & Zhang (2016) portrayed en-
vironmental pollution emissions as undesirable output. Tone 
(2003) included the undesirable output in the SBM model, 
recognizing the various proportional changes between the 
expected and undesired outputs. Guan & Xu (2015) used the 
SBM model of undesirable output to investigate the spatial 
distribution characteristics and evolution of energy efficiency. 
Wang et al. (2017a) found that improving energy efficiency 
is vital for slowing global warming through an improved 
SBM model study. Meng et al. (2016) used the hybrid SBM 
model to measure the provincial energy efficiency under the 
haze constraints in China and found that there is a problem 
of energy waste. Qin et al. (2016) used the DEA-SBM model 
of undesired output to measure the energy efficiency of the 
eastern coastal area and found that energy efficiency is greatly 
affected by undesired output.

For the study of energy efficiency influencing factors, 
Cui et al. (2014) found that technological progress has 
a significant impact on energy efficiency. Wang et al. 
(2011) believed that energy efficiency will be affected by 
government intervention, degree of opening to the outside 
world, and industrial structure. Yao et al. (2012) found that 
optimizing the industrial structure can improve energy effi-
ciency. Wu & Du (2018) based on the data of 11 provinces 
in the Yangtze River Economic Belt found that skewed 
technological progress has a positive effect on total factor 
energy efficiency. Ruipeng & Boqiang (2017) believed that 
improving technical production methods, increasing per 
capita GDP, optimizing the energy structure, and increasing 
foreign direct investment can improve energy efficiency. 
Liu et al. (2008) studied that increasing the relative price of 
energy will have a positive impact on energy efficiency, but 
Li et al. (2014) analyzed that the effect of energy price on 
energy efficiency is not significant. Jiang & Ji (2020) believed 
that the level of urbanization has a negative inhibitory effect 
on energy efficiency, while Song et al. (2020) believed that 
the level of urbanization has a positive effect. Wang et al. 
(2017b) analyzed that environmental regulations inhibit the 
improvement of energy efficiency by increasing the operating 
costs of enterprises. Wang & Zhong (2015) indicated that 
environmental regulation improves energy efficiency through 
innovation compensation effects. Dai & Fu (2020) believed 
that the impact mechanism of environmental regulations is 
different for regions with different energy efficiency.

This article draws on the work of earlier researchers and 
expands on two points: On the one hand, due to the vast num-
ber of input and output indicators, the standard DEA model 
will have several decision-making units that are rated as 

successful, but it cannot be distinguished further. As a result, 
the Super-SBM model of undesirable output is employed in 
MaxDEA software to assess energy efficiency; on the other 
hand, the energy usage efficiency of various locations and its 
influencing factors are usually spatially associated. The use of 
traditional panel models will ignore this problem. However, 
the spatial panel model can test whether the energy efficiency 
has spatial relevance, and can decompose its effects.

MATERIALS AND METHODS

Construction of the Theoretical Model

Super-SBM model: The Super-SBM model can solve the 
evaluation and ranking of relatively effective units. When 
evaluating the j-th decision-making unit, the input and 
output of the j-th decision-making unit will be replaced by 
the linear combination of the inputs and outputs of all other 
decision-making units, and the j-th decision-making unit 
will be excluded.

Suppose there are n decision-making units (DMUj, j = 
1, 2,...,n), and each DMU uses m types of inputs (i=1,...,m) 
to produce s types of outputs (r=l,..., s), mark the DMU to 
be evaluated as DMUj (j=1,...,n). Let xij be the i-th input of 
the j-th DMU, and yrj be the r-th output of the j-th DMU. 
The model of the Super-SBM under variable returns to scale 
is as follows:
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Where, δ is the target efficiency, x, yg, and yb represent input, expected output, and undesired 

output respectively; s denotes the relaxation vector, which can avoid the deviation that may be 

caused by the radial and angle selection; λ indicates the weight vector.  
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Where, i, j are regions, xi and xj denote the observed values of energy efficiency, x  

represents the mean value, and wij is the (i, j) element of the spatial weight matrix. 
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Where, δ is the target efficiency, x, yg, and yb represent 
input, expected output, and undesired output respectively; 
s denotes the relaxation vector, which can avoid the devia-
tion that may be caused by the radial and angle selection; λ 
indicates the weight vector. 

Spatial Correlation
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lation. The global Moran’s I statistic is defined as:
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Where, Yi,t–1 is the first-order lag term of the explained 
variable, μi represents the individual effect, and γt denotes 
the time effect. If λ = 0, it is the SDM model; if λ = 0, δ = 
0, it is the SLM model; if τ = ρ = 0, δ = 0, it is SEM model.

RESULTS AND DISCUSSION

Data Source and Description

The data in this article comes from the 2013-2018 “China 
Price Statistical Yearbook” (Energy prices), “China Environ-
mental Yearbook” (Strength of environmental regulations), 
and “China Statistical Yearbook” (Other indexes). The index 
system for the study of energy efficiency in various provinces 
in China is shown in Table 1.

It should be noted that to reduce the numerical difference 
between variables, logarithms are taken for all variables.

Calculation of Energy Efficiency

Use MaxDEA software to measure the energy efficiency of 
each province as shown in Table 2.

From 2012 to 2017, the energy efficiency of most prov-
inces has shown an upward trend. Generally speaking, Chi-
na’s energy efficiency is constantly improving. Among them, 
the energy efficiency of Beijing, Tianjin, Shanghai, Jiangsu, 
and Guangdong is at the leading domestic level, with energy 
efficiency above 1; Heilongjiang, Guizhou, Yunnan, Gansu, 
Qinghai, Ningxia, and Xinjiang are at a relatively low level 
in China, and their energy efficiency doesn’t exceed 0.5. In 
2017, the average energy efficiency of China’s provinces 
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was 0.606, most of the eastern provinces were higher than 
the national average and most of the western provinces were 
lower than the national average. From the east coast to the 
west interior, energy efficiency is gradually declining, and 
a significant divide exists between the central and western 
regions and the eastern coastal districts. The energy efficiency 
of provinces that are geographically close together is similar, 
implying that China’s inter-provincial energy efficiency may 
be spatially related.

Spatial Correlation Test

The spatial weight matrix reflects the proximity of provinces 
in geographic space. This paper uses the modified adjacency 
weight matrix, which doesn’t regard Hainan as an isolated 
island but is adjacent to Guangdong. According to the 
convention, all main diagonal elements are taken as 0, the 
formula is as follows:

	

 

 

Spatial Correlation Test 

The spatial weight matrix reflects the proximity of provinces in geographic space. This paper uses 
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...(9) 

Calculate the global Moran's I index of the energy efficiency of China's provinces from 2012 

to 2017 through the software Stata16.0. It can be seen from Table 3 that the spatial correlation test 

of each year is considered to have a positive spatial autocorrelation at a significance level of 10%. 

Table 3: China's 2012-2017 global Moran's I Index of energy efficiency. 

year I E(I) sd(I) z p-value 

2012 0.158  －0.034  0.112  1.727  0.042  

2013 0.126  －0.034  0.111  1.441 0.075  

2014 0.149  －0.034  0.111 1.647  0.050  

2015 0.149  －0.034  0.111 1.647  0.050  

2016 0.178  －0.034  0.112  1.897 0.029  

2017 0.347  －0.034  0.111  3.442  0.000  

Use GeoDa software to draw Moran's I scatter plot using 2017 energy efficiency data, as shown 

in Figure 1. Both the global Moran's I and the local Moran's I are represented in this diagram. The 

Global Moran's I index was shown to be significantly positive after 999 randomized permutations. 

The local Moran's I of each province is the product of the horizontal and vertical coordinates of 

these distributed sites. 
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ficiency of China’s provinces from 2012 to 2017 through 

the software Stata16.0. It can be seen from Table 3 that the 
spatial correlation test of each year is considered to have a 
positive spatial autocorrelation at a significance level of 10%.

Use GeoDa software to draw Moran’s I scatter plot using 
2017 energy efficiency data, as shown in Figure 1. Both the 
global Moran’s I and the local Moran’s I are represented in 
this diagram. The Global Moran’s I index was shown to be 
significantly positive after 999 randomized permutations. 
The local Moran’s I of each province is the product of the 
horizontal and vertical coordinates of these distributed sites.

Beijing, Tianjin, Shanghai, Shandong, Fujian, Jiangsu, 
and Zhejiang are in the H-H cluster (first quadrant), all prov-
inces are located in the east. Based on the policy advantages 
in the early stage of reform and opening up and their own 
geographical advantages, the economic development start-
ed earlier. With the advancement of the industrial transfer 
process, the current main industries are tertiary industries 
with lower energy consumption; Jiangxi, Hebei, and Hainan 
belong to the L-H type (second quadrant), indicating that 
the energy efficiency of these three provinces is relatively 
low, but the energy efficiency of neighboring provinces is 
relatively high. Their economy is underdeveloped and they 

Table 1: Index selection and description.

Model Index Description

Super-SBM 
model

Input Capital investment Total city investment in fixed assets

Labor input (Total number of employees at the end of the previous year + total number 
of employees at the end of the year)/2

Energy input Total energy consumption

Output Expected output Industrial output

GDP(Gross domestic product)

Undesired output Industrial wastewater discharge

Industrial sulfur dioxide emissions

Industrial smoke (dust) emissions

Space panel 
model

Explained 
variable

Energy efficiency Use Super-SBM model to measure (Y)

Explanatory 
variables

The level of economic development GDP per capita (X1)

Urbanization level The proportion of the urban population in total population (X2)

Energy structure The proportion of natural gas consumption in total energy consumption (X3)

Energy prices Annual purchase index of industrial producers (fuel power category) (X4)

Strength of environmental regulations Sewage discharge fee collection amount (X5)

Technological innovation Research and development expenditure (X6)

Foreign direct investment The proportion of total investment of foreign-invested enterprises in GDP 
(X7)
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Table 2: Inter-provincial energy efficiency values.

2012 2013 2014 2015 2016 2017 Mean Rank

Beijing 1.138 1.16 1.171 1.175 1.162 1.14 1.158 2

Tianjin 1.182 1.187 1.183 1.175 1.169 1.113 1.168 1

Hebei 0.534 0.532 0.51 0.489 0.519 0.512 0.516 21

Shanxi 0.433 0.383 0.352 0.316 0.296 0.538 0.386 25

Inner Mongolia 1.075 1.071 1.037 1.026 1.008 0.435 0.942 6

Liaoning 0.546 0.557 0.555 0.615 0.553 0.567 0.566 14

Jilin 0.615 0.641 0.639 0.618 0.644 0.589 0.624 11

Heilongjiang 0.437 0.459 0.471 0.446 0.397 0.362 0.429 23

Shanghai 1.059 1.091 1.089 1.108 1.117 1.199 1.111 3

Jiangsu 1.112 1.02 1.005 1.01 1.021 1.039 1.035 5

Zhejiang 1.002 0.786 0.826 0.804 0.866 0.834 0.853 7

Anhui 0.56 0.592 0.579 0.566 0.615 0.608 0.587 13

Fujian 0.635 0.689 0.718 0.721 0.815 0.774 0.725 8

Jiangxi 0.537 0.578 0.571 0.549 0.538 0.536 0.552 16

Shandong 0.701 0.712 0.685 0.676 0.697 0.693 0.694 9

Henan 0.584 0.556 0.537 0.526 0.571 0.602 0.563 15

Hubei 0.552 0.603 0.606 0.615 0.635 0.62 0.605 12

Hunan 0.56 0.645 0.656 0.656 0.652 0.622 0.632 10

Guangdong 1.063 1.069 1.055 1.064 1.056 1.042 1.058 4

Guangxi 0.496 0.546 0.553 0.559 0.558 0.456 0.528 20

Hainan 0.557 0.544 0.546 0.52 0.454 0.409 0.505 22

Chongqing 0.508 0.532 0.545 0.559 0.569 0.549 0.544 17

Sichuan 0.559 0.576 0.557 0.544 0.513 0.495 0.541 18

Guizhou 0.322 0.366 0.378 0.397 0.397 0.389 0.375 26

Yunnan 0.371 0.408 0.407 0.407 0.374 0.359 0.388 24

Shaanxi 0.582 0.554 0.536 0.499 0.505 0.514 0.532 19

Gansu 0.359 0.356 0.337 0.302 0.285 0.294 0.322 29

Qinghai 0.36 0.365 0.354 0.347 0.331 0.286 0.341 28

Ningxia 0.335 0.36 0.349 0.349 0.346 0.339 0.346 27

Xinjiang 0.328 0.333 0.33 0.299 0.277 0.274 0.307 30

mainly operate traditional resource-based industries with 
high resource consumption and low output. The extensive 
economic development model leads to low energy efficiency. 
Therefore, optimizing the industrial structure and improving 
energy efficiency are issues that local governments need to 
pay attention to. The 14 regions of Heilongjiang, Inner Mon-
golia, Xinjiang, Gansu, Shanxi, Shaanxi, Ningxia, Qinghai, 
Yunnan, Guizhou, Sichuan, Chongqing, Liaoning, and Jilin 
are in the L-L aggregation (third quadrant). Most of them 
are located in the central and western regions and have abun-

dant natural resources. Early economic development relied 
heavily on energy-intensive businesses like heavy industry. 
Energy efficiency has improved in recent years, but there 
is still a lot of room for improvement, and an upgrade of 
the industrial structure is on the horizon. Guangdong is the 
typical province in the H-L cluster (quadrant 4), indicating 
that its energy efficiency is improving quicker than that of 
its neighbors Fujian, Jiangxi, Hunan, Guangxi, and Hainan. 
The energy efficiency of China’s 30 provinces showed an 
obvious spatial imbalance. The energy efficiency of the 
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central and western provinces showed a concentration of 
low efficiency, while the energy efficiency of the southeast 
coastal areas showed a concentration of high efficiency. The 
whole presents a stepped distribution.

Spatial Panel Model Analysis

Before analyzing the spatial panel model, it is necessary to 
judge the choice of SEM, SLM, or SDM through the LM 
test, Wald test, and LR test. Through the LM test, LM-Error 
and robust LM-Error, LM-Lag, and robust LM-Lag all reject 
the null hypothesis at the 1% significance level, that is, it is 
considered that there is a spatial error or a spatial lag. The 
spatial Durbin model is general in spatial econometrics. It can 
be judged whether SDM can be simplified to SAR or SEM 
through the Wald test and LR test. According to the test re-
sults, the p-values of the Wald test and LR test are both 0.000, 

that is, the SDM model is the best. Then through the Hausman 
test to determine whether to choose a fixed effect model or 
a random-effect model, the Hausman statistic is 88.84, the 
p-value is 0.000, and the null hypothesis of random effects 
is rejected at the 5% significance level, so the fixed effect 
model is constructed. In addition, to eliminate the influence 
of heteroscedastic and autocorrelation, a fixed-effects model 
with modified heteroscedasticity and autocorrelation robust 
standard errors is used. The estimation results comparing 
the traditional panel model and the spatial panel model are 
shown in Table 4. 

In the fixed-effects model with traditional panel modi-
fied heteroscedasticity and autocorrelation robust standard 
errors, the level of economic development has a positive 
and significant impact on energy efficiency. The level of 
urbanization, the intensity of environmental regulations,  
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Table 3: China’s 2012-2017 global Moran’s I Index of energy efficiency.

year I E(I) sd(I) z p-value

2012 0.158 －0.034 0.112 1.727 0.042 

2013 0.126 －0.034 0.111 1.441 0.075 

2014 0.149 －0.034 0.111 1.647 0.050 

2015 0.149 －0.034 0.111 1.647 0.050 

2016 0.178 －0.034 0.112 1.897 0.029 

2017 0.347 －0.034 0.111 3.442 0.000 
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and foreign direct investment have a significant negative 
impact on energy efficiency. Compared with the traditional 
panel model, the spatial panel model considers the combined 
effects of the spatial error term and the spatial lag term, so it 
can more scientifically and reasonably reflect the direction 
and magnitude of the effects of various influencing factors. In 
the individual-time double fixed-effect spatial Durbin model, 
there is a significant positive impact on the level of economic 
development and a significant negative impact on the level of 
urbanization and the intensity of environmental regulations.

Then use the individual time double fixed effect spatial 
Durbin model to decompose its effects into direct effects, 
spillover effects (indirect effects), and total effects. The 
results are shown in Table 5.

In terms of direct effects, the level of economic develop-
ment has a significant positive impact on energy efficiency, 
indicating that economic development can improve energy 
efficiency. With the continuous development of the econo-
my and the improvement of the level of industrialization, 
a large number of advanced equipment and technologies 
have entered production and life, which has promoted the 
improvement of energy efficiency. The level of urbanization 
and the intensity of environmental regulations in the region 
have a significant negative impact on energy efficiency, in-
dicating that the improvement of the two will reduce energy 
efficiency. The reason is that the acceleration of urbanization 
will increase people’s demand for infrastructure, promote the 
rise of high-polluting industries such as steel and cement, and 

Table 5: Effect decomposition results of spatial Durbin model.

variable Direct effects Spillover effects Total effects

coefficient p value coefficient p value coefficient p value

lnX1 1.017 0.000 -1.284 0.000 -0.267 0.303 

lnX2 -0.731 0.046 0.818 0.123 0.087 0.869 

lnX3 -0.050 0.232 0.259 0.002 0.209 0.005 

lnX4 0.094 0.447 0.212 0.436 0.306 0.260 

lnX5 -0.055 0.025 0.053 0.227 -0.002 0.965 

lnX6 0.029 0.602 0.378 0.005 0.408 0.008 

lnX7 -0.033 0.330 -0.185 0.009 -0.218 0.005 

Table 4: Model estimation results.

variable A fixed-effects model with traditional panel mod-
ified heteroscedasticity and autocorrelation robust 

standard errors

Individual time double fixed effect spatial Durbin model

coefficient p-value coefficient p-value

lnX1 0.512 0.007 0.988 0.000 

lnX2 -1.573 0.002 -0.698 0.061 

lnX3 0.005 0.875 -0.050 0.243 

lnX4 -0.002 0.938 0.100 0.420 

lnX5 -0.039 0.049 -0.053 0.031 

lnX6 0.061 0.179 0.034 0.563 

lnX7 -0.085 0.003 -0.038 0.254 

W*lnX1 -1.258 0.000 

W*lnX2 0.764 0.167 

W*lnX3 0.271 0.001 

W*lnX4 0.241 0.411 

W*lnX5 0.050 0.251 

W*lnX6 0.407 0.003 

W*lnX7 -0.200 0.006 
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increase the demand for living energy, thereby inhibiting the 
improvement of energy efficiency. Increasing the intensity of 
environmental regulations means increasing the amount of 
pollution charges levied on enterprises. The environmental 
regulations are closely linked to the market, guide enterprises 
through market signals, and can produce continuous stimulus 
to enterprises. However, under the influence of the current 
factor market distortions in China, the deepening of regional 
capital is mainly biased towards high energy consumption 
and high pollution heavy chemical industries, making it 
difficult to achieve the incentive effect of environmental 
regulations on enterprise technological innovation, thereby 
inhibiting the improvement of energy efficiency.

The impact of energy structure, energy prices, techno-
logical innovation, and foreign direct investment on energy 
efficiency is not significant. In terms of energy structure, nat-
ural gas is low-carbon energy. Increasing its consumption can 
reduce pollution and improve energy efficiency. However, 
excessive natural gas consumption will cause a waste of en-
ergy. When energy is not fully utilized, energy efficiency will 
be inhibited and can’t be improved, so the impact of energy 
structure on energy efficiency is not significant. In terms of 
energy prices, although price increases will force companies 
to invest in R&D of energy-saving and emission-reduction 
technologies, thereby improving energy efficiency. However, 
due to the time lag in the transmission mechanism of energy 
prices, the stricter price control of local governments, and the 
competition mechanism and monopoly mechanism among 
enterprises, it is difficult to form unified pricing in the energy 
market, which leads to inefficiency. Therefore, the impact 
of energy prices on energy efficiency is not significant. In 
terms of technological innovation, although technological 
progress can improve energy efficiency and reduce energy 
consumption, it will also produce a “rebound effect”, there-
by promoting economic growth, leading to an increase in 
energy demand and reducing energy efficiency. Therefore, 
the impact of technological innovation on energy efficiency 
is not significant. In terms of foreign direct investment, 
foreign investment can introduce advanced technology and 
efficient and cutting-edge production management methods 
to promote energy efficiency. However, excessive foreign 
investment will bring in a large number of foreign investment 
companies, including high energy consumption and high 
pollution companies, which will inhibit the improvement 
of energy efficiency. Therefore, the impact of foreign direct 
investment on energy efficiency is not significant.

In terms of spillover effects, adjacent areas’ energy 
structures and technology innovation have a positive and 
considerable spillover effect on the region’s energy efficien-
cy, with the technological innovation spillover effect being 

bigger than the energy structure. The economic development 
level and foreign direct investment of neighboring regions 
have a significant negative spillover effect on the energy 
efficiency of the region, and the negative spillover effect 
of the economic development level is greater than that of 
foreign direct investment. The level of urbanization, energy 
prices, and the intensity of environmental regulations in 
neighboring regions do not have a significant impact on the 
energy efficiency of the region.

CONCLUSION 

First and foremost, this paper uses the Super-SBM model to 
measure the energy efficiency of 30 provinces in China from 
2012 to 2017 and finds that most provinces are increasing 
year by year. There is an obvious imbalance in energy effi-
ciency among provinces, gradually decreasing from the east 
coast to the west inland; Besides, through the global Moran 
index test and the local Moran scatter plot, it is judged that 
energy efficiency has spatial correlation; Last but not least, 
the SDM model is judged by LM test, Wald test, and LR 
test, and the fixed effect model is judged by Hausman test. 
When the fixed-effects model is compared to traditional 
panel modified heteroscedasticity and autocorrelation ro-
bust standard errors, as well as the individual-time double 
fixed-effect spatial Durbin model, it is discovered that the 
latter can more scientifically and reasonably reflect the direc-
tion and magnitude of various influencing factors. Decom-
posing the effects of the individual-time double fixed-effect 
spatial Durbin model. In terms of direct effects, the level of 
economic development has a significant positive impact on 
energy efficiency, while the level of regional urbanization and 
the intensity of environmental regulations have a significant 
negative impact on energy efficiency, and other indicators 
are not significant. In terms of spillover effects, the positive 
spillover effects of technological innovation are greater 
than the energy structure, the negative spillover effects of 
economic growth are greater than foreign direct investment, 
and other indicators are not significant.

The recommendations are as follows: To start with, 
according to the spatial relevance of energy efficiency, pro-
mote the free flow and optimal allocation of energy between 
regions, thereby improving energy utilization efficiency. The 
improvement of energy efficiency in neighboring regions is 
conducive to the improvement of energy efficiency in the 
region. It is necessary to strengthen the coordinated devel-
opment of energy efficiency between the region and neigh-
boring provinces. In addition, develop the level of economic 
development in the region, increase per capita GDP, improve 
people’s quality of life, strengthen inter-regional economic 
cooperation and technological exchanges, and thereby im-
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prove energy efficiency. But at the same time, it is necessary 
to avoid the negative spillover effect of the economic devel-
opment of neighboring regions on the region. To improve 
the coordinated economic development between areas, the 
government should adopt corresponding guiding policies. 
Finally, provinces with higher energy efficiency should 
maximize the positive spillover effects of energy structure 
and technological innovation by encouraging neighboring 
regions to improve their energy structure and technological 
innovation, thereby improving energy efficiency and narrow-
ing the energy efficiency gap. Deepen structural reforms on 
the energy supply side, expand expenditures for technology 
development, and enhance China’s energy self-sufficiency.
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