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ABSTRACT
Ethylenediaminetetraacetic dianhydride modified coconut frond (ECFP) was prepared, characterized 
and applied as a potential adsorbent to remove Pb(II) ions from aqueous solutions. Factors influencing 
adsorption such as pH of the solution, adsorbent dosage,  Pb(II) concentration, contact time, and 
temperature were investigated. The optimum conditions for adsorption of Pb(II) ions were at pH 4 
and dosage of 0.02 g. Adsorption reached its equilibrium state in 30 min for all Pb(II) concentrations. 
Chemisorption was suggested as the rate-limiting step as the adsorption process correlated well with 
the pseudo-second-order kinetics model. Based on adsorption isotherm results, Langmuir model fitted 
the experimental data well, and the maximum adsorption capacity was 84.03 mg.g-1 at 300 K. Based 
on the thermodynamic study, Pb(II) adsorption occurred spontaneously with the enthalpy and entropy 
changes recorded were 0.0615 kJ mol-1 and 241.28 J K-1 mol-1, respectively. It was found that the 
nature of adsorption was endothermic as the ∆Ho value obtained was positive.

INTRODUCTION

The release of non-bioessential heavy metals in the aquatic 
system has resulted in a serious environmental pollution 
issue. Lead (Pb) is listed as one of the harmful pollutants by 
World Health Organization due to its high propensity for 
biological accumulation, non-biodegradability and very toxic 
even presents at a low concentration (Bai et al. 2019, Cao et 
al. 2019). At Pb(II) ions concentration above 0.05 mg.L-1 in 
drinking water, one might experience acute lead poisoning 
symptoms such as anaemia, hepatitis, nephritic syndrome, 
and encephalopathy. Excess exposure to Pb(II) ions might 
damage central nervous and gastrointestinal systems, liver 
and kidneys. For this reason, the United State Environmental 
Protection Agency (USEPA) had set the maximum standard 
concentration of Pb(II) ions in drinking water of 300 µg.L-1 
(Hu & Qiu 2019). Due to these reasons, various methods 
such as ion exchange, chemical precipitation, membrane 
filtration, and adsorption have been used to remove Pb(II) 
ions from wastewater (Cao et al. 2019).

In Malaysia, coconut (Cocos nucifera) is the third most 
important industrial crop after oil palm and rubber. In 2001, 
about 151 000 ha of land in Malaysia were used for coconut 

plantation and the value reduced gradually due to competition 
with oil palm plantation. As a result, the coconut industry 
revitalizing plan was carried out for replanting coconut trees 
between 2008 and 2015. This consequently raised another 
environmental issue, which was related to the disposal of 
coconut waste, as large quantities of coconut fronds were 
produced during pruning and silvicultural practices (Njoku 
et al. 2014, Shafie et al. 2012).

Ethylenediaminetetraacetic dianhydride (EDTAD) is a 
revivification of ethylenediaminetetraacetic acid (EDTA) 
with two additional anhydride groups on each molecule 
of EDTA. EDTAD is a biodegradable and powerful com-
plexing agent due to the presence of carboxylic and amine 
groups (Júnior et al. 2009, Yu et al. 2008, Zhang et al. 
2011). Several researchers had used EDTAD in modifying 
low-cost biomaterials such as neem leaf powder (Hanafiah 
et al. 2013), Aloe vera rind powder (Hanafiah et al. 2018), 
sugarcane bagasse (Júnior et al. 2009) and baker’s yeast 
biomass (Xia et al. 2015, Yu et al. 2008, Zhang et al. 2011) 
to improve their adsorption performance. In this study, the 
adsorption behaviour of Pb(II) ions onto EDTAD modified 
coconut frond which included the effects of pH, dosage, 
concentration, contact time, and temperature were evaluated.
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MATERIALS AND METHODS

Materials: Coconut fronds were collected from a coconut 
tree plantation located in Kelantan, Malaysia. The fronds 
were washed thoroughly, cut into small pieces, dried and 
washed with tap water to remove insoluble impurities before 
with deionized water. The fronds were dried in an oven at 
333 K overnight before being ground and sieved by using 
a mechanical grinder to obtain the average particle size of 
125-250 µm. The dried coconut frond powder was boiled in 
deionized water for 30 min to destroy microbes, washed and 
dried again in an oven overnight at 333 K. Ethylenediamine-
tetraacetic dianhydride (EDTAD) treatment was performed 
according to the method proposed by Hanafiah et al. (2013). 
Five grams of dried untreated coconut frond powder (UCFP) 
was added into the mixture of 0.50 g of EDTAD and 400 
mL N, N-dimethylacetamide (DMAc) in a three-neck round 
bottom flask equipped with a condenser. The mixture was 
refluxed at 343 K for 24 h. The mixture was filtered and 
rinsed with 0.10 M NaOH thoroughly. The wet coconut frond 
powder was further rinsed with DMAc before finally rinsed 
with 4 L deionized water until the constant pH was obtained. 
The EDTAD treated coconut frond powder was dried in an 
oven at 333 K overnight and designated as ECFP. 

Characterizations of ECFP: UCFP and ECFP were char-
acterized by using an Attenuated Total Reflectance-Fourier 
Transform Infrared (ATR-FTIR) spectrometer (PerkinElm-
er, Spectrum 100, USA). Determination of pHzpc of ECFP 
was done according to the method reported by Hanafiah et 
al. (2018) with some modification. A volume of 50 mL (0.01 
M) KNO3 was placed into different 100 mL conical flasks. 
The initial pH of this solution (pHo) was adjusted from 2 to 
10 by adding drops of 0.10 M HCl or NaOH solutions. A 
weight of 0.10 g ECFP was added into each flask and shaken 
in a water bath shaker for 24 h at 120 stroke min-1 at 300 K. 
ECFP was filtered and the final pH of KNO3 solutions (pHf) 
was measured using a pH meter. 

Batch adsorption experiments: The analytical grade of 
1000 mg.L-1 stock solution of Pb(II) was obtained from 
Merck (Germany). Working concentration solutions of Pb(II) 
ions were prepared by appropriate dilutions. All adsorption 
experiments were done using 50 mL of 10 mg.L-1 Pb(II) 
solutions (otherwise stated) and 0.02 g ECFP at 300 K and 
the shaking rate was 120 stroke min-1. The effect of pH on 
adsorption of Pb(II) ions onto ECFP was done by adjusting 
the initial pH from 1 to 5 by adding drops of 0.10 M HCl and 
NaOH solutions. The effect of ECFP dosage on adsorption 
of Pb(II) ions was performed by varying the weight of ECFP  
(0.02 to 0.10 g) in Pb(II) ions solutions at pH 4. The mixtures 
were shaken for 90 min. In the kinetic study, the concentra-
tion of Pb(II) ions solutions was varied from 10 to 30 mg.L-1 

and the solutions were shaken at different time intervals (1, 
3, 6, 10, 20, 30, 60, 90 and 120 min). The pH and the ECFP 
dosage were fixed at 4 and 0.02 g, respectively. Similar pH 
and adsorbent dosage were used in isotherm study, but the 
concentrations of Pb(II) ions were varied (5, 10, 15, 20, 25, 
30, 40 and 75 mg.L−1). The mixtures were then shaken for 
90 min at 300 K. In the thermodynamic study, 5, 10, 15, 20, 
25, 30, 40 and 75 mg.L-1 Pb(II) ions solutions were shaken 
with 0.02 g ECFP for 90 min at different temperatures (303, 
313 and 323 K). All experiments were done in duplicate. 
The mixtures were then filtered, and the final concentrations 
were analysed using an Atomic Absorption Spectrometer 
(AAS, PerkinElmer PinAAcle 900T, USA). The amount of 
adsorbed Pb(II) ions, qe (mg.g-1) and the removal percentage 
(%) of Pb(II) ions were calculated using eqs. (1) and (2), 
respectively.
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Where, Ci and Cf are initial and final concentrations of 
Pb(II) ions (mg.L-1), respectively, m is the weight of ECFP 
(g) and V is the volume of Pb(II) ions solutions (L).

RESULTS AND DISCUSSION 

Characterizations of ECFP: Fig. 1 showed the FTIR spec-
tra of UCFP, ECFP and Pb(II) loaded ECFP. A strong and 
broad band was observed at 3323 cm-1 in the FTIR spectra 
of UCFP. This might be attributed to the presence of O-H 
groups from cellulose, hemicellulose and lignin. Other peaks 
were observed at 1727, 1607, 1368, 1033, 898, and 562 cm-1 
suggesting the presence of C=O, -NH, C-O, C-H, and =C-H.  
The presence of a new peak at 1736 cm-1 in ECFP could be 
attributed to the introduction of ester groups, as suggested by 
Pereira et al. (2010). Thus, it might suggest that EDTAD was 
successfully introduced onto UCFP by forming an ester with 
-OH groups from coconut frond (Júnior et al. 2009). After 
the adsorption of Pb(II) ions, the intensity of the peaks at 
3323 and 1033 cm-1 was reduced, suggesting that  -OH and 
C-O-C groups took part in the binding of Pb(II) ions during 
the adsorption process. Besides, there was a shift of peak at 
1603 to 1593 cm-1 suggesting that a bond might be formed 
between Pb(II) ions and -NH groups.  

The pH of zero point charge or pHzpc was measured to 
determine the pH where the adsorbent had a zero net surface 
charge. Basically, at pH=pHzpc, there were balance charges 
on the adsorbent surface. In general, at pH < pHzpc, an 
adsorbent surface tended to carry positive charges, while at 
pH > pHzpc, the adsorbent surface was negatively charged. 
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Therefore, the adsorption of a cationic metal is favoured 
when the pH was higher than pHzpc (Srivastava et al. 2015).  
Fig. 2 shows the plot of pHzpc of ECFP. The pHzpc of ECFP 
was found at 6.4, based on the intersection point of the 
pHo-axis. This indicated that when the pH of the solution was 
higher than 6.4, Pb(II) ions could have easily been attracted 
to the ECFP surface as more negative charges surrounded 
the adsorbent surface.  

Effect of pH on adsorption of Pb(II) ions onto ECFP: 
The pH of a solution is a critical parameter in the adsorption 
of metal ions onto an adsorbent. The variation of pH might 
influence the affinity between adsorbent and adsorbate. To 
study the effect of initial pH on adsorption of Pb(II) ions onto 

ECFP, the initial pH of Pb(II) solution was varied from 1 to 5. 
Fig. 3 showed that low adsorption capacity, qe was recorded 
at pH 1 (4.43 mg.g-1). This could be explained by electrostatic 
repulsion of positively charged Pb(II) ions with positively 
charged adsorbent due to protonation of functional groups 
on the adsorbent surface or excessive cations from sorbed H+ 
ions on the adsorbent surface itself (Ali et al. 2011, Faghihian 
et al. 2005, Torres-Blancas et al. 2013, Zhang et al. 2016)

The qe value increased gradually with the increasing of 
initial pH of Pb(II) ions, where 7.25, 14.48, 22.20 and 23.45 
mg.g-1 were recorded at pH 2, 3, 4 and 5, respectively. 
Basically, the increase of pH could lead to the reduction of 
repulsive force of the adsorbent surface towards the adsorbate 
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Fig. 3: Effect of pH on adsorption of Pb(II) ions onto ECFP (adsorbent weight: 0.02 g; volume: 50 mL; shaking rate: 
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Pb(II) concentration: 10 mg.L-1).

ion (Ali et al. 2011, Bhatnagar & Sillanpää 2009, Galhoum 
et al. 2015, Gok 2014) and thus promoted more adsorption 
sites as for the adsorption of metal ions. Furthermore, the 
number of protons (H+) decreased with the increase of pH 
and thus reduced the competition between metal ions and H+ 
for the adsorption sites (Miraoui et al. 2015, Torab-Mostaedi 
et al. 2015).

Effect of adsorbent dosage on adsorption of Pb(II) ions 
onto ECFP: The dosage of adsorbent was an important pa-
rameter as it strongly influenced the capacity of biosorption 
at a given initial concentration (Asgari et al. 2012). The 
dependence of adsorption of Pb(II) ions on the dosage of 
ECFP was shown in Fig. 4. The per cent of Pb(II) removal 
increased from 88.80 to 98.20 % for the adsorbent dosage 
of 0.02 g to 0.08 g, respectively. This could be attributed to 

the increase of surface area due to the increase of adsorbent 
weight or higher number of adsorption sites for a fixed con-
centration of Pb(II) (Mu et al. 2013). But, beyond dosage 
0.08 g, there was no appreciable change in the percentage 
removal of Pb(II) because the number of Pb(II) ions became 
the limiting factor. The amount of Pb(II) ions adsorbed on 
the other hand showed the opposite trend. As more ECFP 
increased, the amount of Pb(II) ions adsorbed reduced. This 
was mainly due to the higher number of unsaturated adsorp-
tion sites when the dosage was increased, as stated in eq. (1). 

Adsorption rate and kinetic models: Fig. 5 showed the 
effect of different concentrations on the adsorption rate of 
Pb(II) ions onto ECFP. Generally, the plots showed that the 
adsorption of Pb(II) ions involved two phases; the rapid 
adsorption pattern, and the slower, gradual adsorption rate 
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until equilibrium uptake was achieved. At the beginning 
of the adsorption stage, a high amount of metal ions was 
adsorbed due to the high number of available active sites on 
the surface of the biosorbent.  The actives sites were quickly 
occupied by the Pb(II) ions that led to a small difference in 
the change of adsorption rate after 10 min. Based on Fig. 5, 
it can be concluded that the amount of Pb(II) ions adsorbed 
increased proportionally with the initial concentration of 
Pb(II) ions. The amount of 10, 20 and 30 mg.L-1 Pb(II) ions 
adsorbed were 22.20, 35.10 and 46.15 mg.g-1, respectively. 
This situation could be explained by the increase in the 
driving force of the concentration gradient. The increase of 
driving force had overcome all the mass transfer resistance 
of metal ions from the aqueous phase to the solid phase, and 
subsequently provided a higher collision probability between 
metal ions and the active sites (Zhu et al. 2015). Overall, 
adsorption of Pb(II) ions onto ECFP showed relatively rapid 
adsorption process as equilibrium was achieved in less than 
30 min for all Pb(II) concentrations. When the concentration 
of Pb(II) ions was low, the ratio of Pb(II) ions to the num-
ber of available adsorption sites was also low. Therefore, 
the adsorption sites seemed to take up the available Pb(II) 
ions much quickly since there was less competition among 
adsorbates ions (Gupta & Bhattacharyya 2008).

The rate of the adsorption of the metal ions is the momen-
tum of the molecules to move from the aqueous solution to 
the adsorbent surface. In general, the adsorption process is 
governed by one or more mechanisms. Basically, adsorption 
process consists four stages (Srivastava et al. 2015), i.e; (i) the 
transfer of the solute from the solution to the boundary layer 
that surrounds the adsorbent surface, (ii) the transportation of 
the solute from the boundary layer to the adsorbent surface, 
(iii) the transfer of solute to the intraparticle sites from the 
adsorbent surface and (iv) the binding of solute ions to the 

available sites in the internal surface of the adsorbent.

Kinetics is the utmost important information for the 
adsorption study. A full-scale batch adsorption process can 
be obtained from the kinetics study. In addition, by applying 
certain adsorption kinetics models to the experimental data, 
one would gain a better understanding of the adsorption 
mechanism and the potential rate-limiting step (Sadeek et al. 
2015, Zhang et al. 2016). Moreover, the rate of adsorption 
obtained through the kinetic study may help in optimizing 
the reactor dimension and residence time in any particular 
adsorption system (Sadeek et al. 2015). In this study, the 
pseudo-first (Ho & McKay 1998) and pseudo-second (Ho & 
McKay 2000) order kinetic models were used to determine 
the adsorption for the adsorption of Pb(II) ions onto ECFP 
and the linearized equations are given as follows:
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Where, t is time (min), qe,cal is the calculated adsorption 
capacity at equilibrium (mg.g-1), qt is the concentration 
of the analyte at time t (mg.g-1), k1 is pseudo-first-order 
rate constant (min-1) and k2 is  pseudo-second-order rate 
constant (g mg-1 min-1). Figs. 6 and 7 showed the plots of 
pseudo-first-order and pseudo-second-order kinetic models 
for the adsorption of 10, 20 and 30 mg.L-1 Pb(II) ions onto 
ECFP at 300 K, respectively. The results analysed from both 
kinetics models are presented in Table 1. 
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plots showed relatively good linearity (R2 > 0.85), yet the 
pseudo-second-order kinetics model had a better agreement 
with the experimental data. This could be noticed from the 
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kinetic models were used to determine the adsorption for the adsorption of Pb(II) ions onto ECFP 

and the linearized equations are given as follows: 
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30 46.84 2.83 x 10-2 6.54 0.850 64.94 3.03 x 10-2 46.30 0.999
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all concentrations, and the qe,cal values were very close to 
those recorded from the batch adsorption study. Due to this 
reason, chemisorption might govern the adsorption process, 
where metal ions bonded to the adsorbent through valance 
force, either by covalent bond through sharing of electrons or 
ion exchange mechanism (Galhoum et al. 2015, Gok 2014, 
Pasquier & Largitte 2016, Toor & Jin 2012, Wang et al. 2013).

Equilibrium and isotherm study: The equilibrium or 
adsorption isotherm describes the interaction of adsorbate 
with the adsorbent. It represents the distribution of different 
initial concentrations of solute at a constant temperature in 
the aqueous phase and solid phase. As adsorption isotherm 
provides that information, it turns as the most vital study 
in optimizing the adsorbent-adsorbate system, mechanistic 
pathways and understanding the adsorbent surface properties 
(Galhoum et al. 2015, Rangabhashiyam et al. 2014, Zhang 
et al. 2016).

To study the adsorption isotherm for the adsorption of 
Pb(II) ions onto ECFP, the initial concentration of Pb(II) 
ions was varied from 5 to 75 mg.L-1. The mixtures were 
shaken for 90 min to ensure the equilibrium state. At the low 
concentrations of Pb(II) ions (<30 mg.L-1), the sharp slope 
could be observed as presented in Fig. 8, an indication of a 
high-efficiency adsorbent for the adsorption of low metal ion 
concentrations. As the concentration of Pb(II) ions increased 
to 40 mg.L-1, the slope reduced drastically. This condition 
was associated with the saturation of adsorption sites due to 
the increase in the ratio of the number of Pb(II) ions to the 
number of adsorption sites. 

In general, the application of suitable isotherm models 
onto the experimental data is important as it can provide 
valuable information about the distribution of adsorption 

sites on the adsorbent surface, adsorption characteristic and 
affinity of adsorbent-adsorbate in the adsorption system. Sev-
eral mathematical models can be applied to the experimental 
data such as two-parameter isotherm models which include 
Langmuir (Langmuir 1916) and Freundlich (Freundlich 
1906). The linearized equations for Langmuir and Freundlich 
models are given in eqs. (5) and (6), respectively. 
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Where, qe is the equilibrium adsorption capacity (mg.g-1), 
Qmax,cal is the maximum adsorption capacity (mg.g-1), Ce is 
the equilibrium concentration of the adsorbate (mg.L-1), b is 
the equilibrium constant (L mg-1), KF is a Freundlich constant 
(mg.g-1) and n is a constant related to the heterogeneity of the 
adsorbent surface and its affinity for the adsorbate.

Figs. 9 and 10 showed Langmuir and Freundlich plots for 
adsorption of Pb(II) ions onto ECFP and the parameters for 
the isotherm models were listed in Table 2.  In general, both 
isotherm models recorded high R2 values (>0.92). Based on 
the agreement of experimental and theoretical values of Qmax, 
Langmuir isotherm model seemed to have a better fitting 
to the experimental data compared to Freundlich isotherm 
model. This condition might explain the monolayer coverage 
of Pb(II) ions on the ECFP surface.

Adsorption thermodynamics: To study the effect of dif-
ferent temperature on adsorption of Pb(II) ions, solutions 
ranged from 0 to 75 mg.L-1 was stirred with ECFP at 303, 
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compared to Freundlich isotherm model. This condition might explain the monolayer coverage of 

Pb(II) ions on the ECFP surface. 
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Fig. 9: Langmuir plot for adsorption of Pb(II) ions onto ECFP (volume: 50 mL; pH: 4; shaking rate: 120  stroke min-1; adsorbent dosage: 0.02 g;  
temperature: 300 K).
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Fig. 10: Freundlich plot for adsorption of Pb(II) ions onto ECFP (volume: 50 mL; pH: 4; shaking rate: 120  stroke min-1; adsorbent dosage: 0.02 g; 
temperature: 300 K).

Table 2: Langmuir and Freundlich isotherm parameters for adsorption of Pb(II) ions onto ECFP.

Temperature
(K)

qe,exp
(mg.g-1)

Langmuir Freundlich

qmax (mg.g-1) b (L.mg-1) R2 Kf n R2

303 74.85 84.03 0.15 0.974 16.29 2.31 0.927

at higher temperatures as the recorded adsorption capacities 
increased with increasing temperatures, which also suggested 
an endothermic adsorption behaviour. 

The thermodynamic parameters such as enthalpy (ΔH°), 
entropy (ΔS°), and Gibb’s free energy (ΔG°) were calculated 
to determine the adsorption process by using the following 
equations: 
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 ΔGo = -RT ln Kc …(9)

Where, Kc is the equilibrium constant, Cad is the con-
centration of Pb(II) ions adsorbed on solid at equilibrium 

(mmol.L-1), Ce is the equilibrium concentration of Pb(II) ions 
in the solution (mmol.L-1), R is the gas constant (8.314 J K-1 

mol-1) and T is the temperature in Kelvin. Fig. 12 showed the 
Van’t Hoff plot for the adsorption of Pb(II) ions onto ECFP 
at 303, 313 and 323 K. The calculated values for ΔH°, ΔS°, 
and ΔG° were listed in Table 3. In general, all ΔG° values 
for the adsorption of Pb(II) at 303, 313 and 323 K were 
negative, an indication of spontaneous adsorption process 
at those temperatures. The positive ΔH° value recorded in 
this study indicated that adsorption of Pb(II) ions onto ECFP 
was endothermic, where adsorption was more favourable at 
a higher temperature. Meanwhile, the positive ΔS° value 
suggested that this process was an entropy-driven process 
where a higher degree of freedom of the ions was obtained 
at a higher temperature. 
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CONCLUSION

The current work revealed the potential application of ECFP 
as an adsorbent for removing Pb(II) ions from aqueous solu-
tions. The amount of Pb(II) ions adsorbed was reduced in a 
highly acidic condition and the optimum adsorption pH range 
was 4 to 5. The satisfactory adsorption capacity was recorded 
from the Langmuir isotherm model with the qmax value of 
84.03 mg.g-1 being recorded. The potential functional groups 
responsible for adsorbing Pb(II) ions as revealed by the FTIR 
spectra were hydroxyl, amino, carbonyl, aromatics and ether. 
Adsorption process could be considered rapid due to the short 

time taken to reach equilibrium stage for all concentrations of 
Pb(II) ions. Based on the thermodynamic study, Pb(II) ions 
were more favoured to be adsorbed at a higher temperature, 
suggesting an endothermic adsorption behaviour.   
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concentration: 5-75 mg.L-1; equilibrium time 90 min).

Table 3: Thermodynamic parameters for adsorption of Pb(II) ions onto ECFP.

Temperature ΔGo (kJ mol-1) ΔHo (kJ mol-1) ΔSo (J mol-1)

303 -13.14 0.0615 241.28

313 -13.16

323 -16.95
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