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ABSTRACT

Correct streamflow prediction is critical for determining the availability and efficiency of watershed 
spatial plans and water resource management. In the Xuanmiaoguan (XMG) Reservoir Catchment, two 
different versions of the Soil and Water Assessment Tool (SWAT) model are compared to discharge 
predictions. One version is the Topo-SWAT, in which the overland flow is generated by saturation excess 
(Dunne) runoff mechanism, while the other is driven by infiltration excess runoff mechanism, i.e., the 
Regular-SWAT. These SWAT models were calibrated and validated with discharge at daily and monthly 
steps, and then, the annual runoff volume and spatial distribution of runoff generation areas were also 
discussed. At the monthly scale, the un-calibrated Topo-SWAT model outperformed the un-calibrated 
Regular-SWAT model throughout the whole time (2010-2016). The Nash-Sutcliffe efficiency coefficients 
(NSE) using Topo-SWAT and Regular-SWAT were 0.59, 0.58 for calibration and 0.69, 0.72 for validation 
for daily streamflow, and 0.69, 0.65 for calibration and 0.73, 0.88 for validation for monthly streamflow, 
respectively, based on the parameter sensitivity analysis results. There was a 5-year understatement 
for yearly runoff volume using Regular-SWAT, but a 4-year underestimation using Topo-SWAT, which 
had a different year in 2015. Regular-SWAT and Topo-SWAT have significantly different geographical 
distributions of runoff generating locations within the watershed for one occurrence (greater rainfall). 
The findings reveal the most accurate contributing regions for runoff generation in the research 
catchment, allowing for more effective implementation of best management techniques (BMPs).

INTRODUCTION 

The location of frequently-generated overland runoff areas, 
(i.e., hydrologically sensitive areas), is important to select to 
implement best management practices (BMPs) to cut down 
on non-point source (NPS) pollution (Gerard-Marchant et 
al. 2006). Because streamflow is the primary transporter of 
nutrients into the water, runoff-producing sites could be con-
sidered critical source areas (CSAs) for nutrient loss (where 
higher potential nutrient loss corresponds to higher runoff 
loss) (White et al. 2009). Hydrological models are vital and 
effective instruments for locating HSAs and CSAs, and they 
are increasingly employed in soil and water management, as 
well as pollution control. The models may reduce the cost of 
implementing and evaluating management methods, hence 
reducing waste and unwanted results (Golmohammadi et 
al. 2017). 

The SWAT model (Arnold et al. 1998), one commonly 
used semi-distributed model, is utilized to estimate basin 
hydrological cycle and quantify nutrient movement, trans-

formation, and loads in a huge number of watersheds around 
the world (Gan et al. 2015). Green-Ampt infiltration mech-
anism (G&A) and curve number (CN) procedures are two 
rainfall-runoff methodologies for estimating overland flow. 
They’re also both founded on the infiltration excess principle, 
which states that overland runoff occurs when precipitation 
density exceeds soil infiltration capacity. They do not, hows-
ever, account for runoff source areas or topographic effects. 
According to a prior study (Dahlke et al. 2012), in many 
humid and well-vegetated places, overland flows originate 
in a small part of the basin and then expand as precipitation 
increases, forming variable source areas (VSAs) (Lyon et 
al. 2004) driven by saturation excess runoff. Because the 
genesis of runoff in a region is such a complicated process 
with spatial and temporal fluctuations, neither saturation 
excess (Dunne) nor infiltration excess (Horton) runoff could 
account for hydrological processes. Beven and Kirkby (1979) 
simulated the runoff variations using a soil topographic index 
referred to as a saturation excess runoff mechanism. But, 
in flat watersheds, the topographic index is not appropriate 
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since the runoff directions are undefined. Steenhuis et al. 
(1995) suggested reinterpreting the CN approach to deterg-
mine the proportion of runoff generation in a watershed for 
a rainfall event and (Easton et al. 2008) later incorporated 
the soil topographic index into SWAT to better account for 
saturation excess runoff. Then Fuka & Easton (2015) re-conu-
ceptualized SWAT (Topo-SWAT) which did not change the  
SWAT code.

Huangbaihe River, which is a first-order tributary of the 
Yangtze River, is a primary water source for Yichang city, so 
the accurate prediction of streamflow is primarily important. 
The XMG Reservoir, the headwater of the Huangbaihe River 
Basin, is witnessed a large amount of precipitation and has 
a humid subtropical monsoon climate. The study area is 
made up of hillslopes and valleys where overland runoff 
flows from up to downslope, allowing groundwater and soil 
saturation to occur, which is compatible with the saturation 
excess runoff mechanism. The geology and land cover have 
also been altered as a result of large-scale phosphate mining. 
Because of the flow routes altered by surface subsidence and 
fissures produced over goaves, phosphate mining activities 
may have an impact on hydrological processes (mined-out 
areas). When the soil water content is exceeded during 
rainfall, the XMG Reservoir Catchment witnesses variable 
source areas (VSAs) where overland runoff should be gen-
erated (Woodbury et al. 2014, Needelman et al. 2004). To 
the best of the author’s knowledge, the implementation of 
the Topo-SWAT model in China is rarely recorded, and no 
similar studies in the XMG Reservoir Catchment have been 
described previously in the literature.

Therefore, the major objective of this paper is to comr-
pare two versions of SWAT models and then to assess 
each ability for simulating the hydrological processes in 
the XMG Reservoir Catchment, i.e., Regular-SWAT and 
Topo-SWAT. The performance was assessed adequately for 
predicting streamflow at daily and monthly time intervals 
and identifying the spatial distribution of runoff generation.

MATERIALS AND METHODS

Site Description

The Xuanmiaoguan (XMG) Reservoir Catchment is situated 
in the headwater of the east branch of Huangbaihe River, 
which is between 110°08′ and 111°30′ E longitude and 30°42′ 
and 31°22′ N latitude (Fig. 1). The elevation is from 444 m at 
the XMG Reservoir dam to 1781 m at the headstream above 
average sea level. The XMG Reservoir Catchment has an area 
of 380 km2. The climate belongs to a humid subtropical mont-
soon region with a mean annual precipitation of 1101 mm. 
Meanwhile, in this catchment, the rainy season could extend 
from May to October, with heavy rainfall in summer. The 
average annual temperature is approximately 16.9 °C. The 
land cover types are forest, agriculture field, water, bare land, 
and urban, in which forest and agriculture field are the main 
land-use types. The soil types are Haplic Luvisols (LVh1, 
LVh3, and LVh3) for the Regular-SWAT model, Lithosols 
and Chromic Cambisols (LCC), and Lithosols and Eutric 
Cambisols (LEC) for Topo-SWAT model. Over the past 40 
years, the study catchment has experienced industrialization 
and rapid economic growth, resulting in serious soil erosion 

 

 

 

Fig. 1: Map of the Xuanmiaoguan (XMG) reservoir catchment showing the DEM, rivers, and 

location of observed discharge station. 

Description of SWAT Model 

The SWAT is a watershed-scale, continuous-time, and semi-distributed hydrological model, 

which incorporates meteorological elements, soil characteristics, land cover/use, and management 

practices to predict streamflow, sediments, nutrient loading, pesticide transport, and so on (Arnold 

et al. 1998). It allows the simulation of spatial details according to dividing the whole watershed 

into a series of sub-watersheds; then each sub-watershed is composed of hydrologic response units 

(HRUs), which represent homogenous soils properties, land cover, and slopes. Surface runoff, soil 

water, nutrient cycles, sediment, and crop yields are calculated in each HRU (i.e., the smallest 

element), and afterward lumped to the sub-catchment using the weighted mean method, last routed 

into the river systems. There are four water storages including surface runoff, soil water, shallow, 

and deep aquifer. The SWAT model assumes that shallow groundwater can run into the river channel 

as base flow or return to the soil by evaporation, but flow in deep aquifer leaves the watershed 

system. Details about the SWAT model are given in (Neitsch et al. 2011) and 

http://swatmodel.tamu.edu. 

Regular-SWAT 

Within regular-SWAT, two methods are applied to calculate the overland flow, such as the curve 

number procedure (CN) and G&A approach, in which the G&A method is not adopted due to there 

being any sub-daily input data.  

Fig. 1: Map of the Xuanmiaoguan (XMG) reservoir catchment showing the DEM, rivers, and location of observed discharge station.
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and nutrient loss. Hence, it is an important region for the 
research of understanding and predicting the hydrological 
processes, and identifying the runoff generation areas.

Description of SWAT Model

The SWAT is a watershed-scale, continuous-time, and 
semi-distributed hydrological model, which incorporates 
meteorological elements, soil characteristics, land cover/use, 
and management practices to predict streamflow, sediments, 
nutrient loading, pesticide transport, and so on (Arnold et al. 
1998). It allows the simulation of spatial details according to 
dividing the whole watershed into a series of sub-watersheds; 
then each sub-watershed is composed of hydrologic response 
units (HRUs), which represent homogenous soils properties, 
land cover, and slopes. Surface runoff, soil water, nutrient 
cycles, sediment, and crop yields are calculated in each HRU 
(i.e., the smallest element), and afterward lumped to the sub-
catchment using the weighted mean method, last routed into 
the river systems. There are four water storages including 
surface runoff, soil water, shallow, and deep aquifer. The 
SWAT model assumes that shallow groundwater can run 
into the river channel as base flow or return to the soil by 
evaporation, but flow in deep aquifer leaves the watershed 
system. Details about the SWAT model are given in (Neitsch 
et al. 2011) and http://swatmodel.tamu.edu.

Regular-SWAT

Within regular-SWAT, two methods are applied to calculate 
the overland flow, such as the curve number procedure (CN) 
and G&A approach, in which the G&A method is not adopted 
due to there being any sub-daily input data. 

The CN equation was estimated as (USDA-SCS, 1972).

 

 

 

The CN equation was estimated as (USDA-SCS, 1972). 
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where Q is the streamflow depth (mm/d), Pe is effective rainfall (mm.d-1), i.e., rainfall minus 

initial abstraction (Ia), S is the overall soil water-storage capacity (mm) which is calculated 

according to the soil type: 
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where CN is the curve number and could be adjusted by the antecedent soil moisture content 

using daily rainfall series. 

Topo-SWAT  

In humid regions, overland runoff is mainly produced by the saturation excess runoff 

mechanism. So, the Topo-SWAT provides the CN-VSA method to estimate overland flow and 

redefine the HRUs. In Regular-SWAT, HRUs are composed of homogeneous vegetation, soil 

characteristics, and slope classes, whereas in Topo-SWAT, soil topographic index (TI) was 

combined to define the HRUs, which has been seamlessly integrated into SWAT representing the 

VSA hydrology and can be derived from digital elevation model (DEM). TI estimates runoff based 

on the digital elevation and topography data (Suliman et al. 2015). And the equation can be obtained 

(Easton et al. 2008):  

ln( )
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where a is the upslope contributing area of a given point (m), tanβ is the slope gradient.  

The TI layer, representing VSA hydrology in Topo-SWAT, is calculated applying the DEM and 

ArcGIS hydrology tools. And then it is reclassified to generate a new class layer, i.e., ten wetness 

index classes with equal area. They range from one wetness class (10% of the catchment with the 

lowest potential of runoff generation) to ten classes (10% of the catchment with the highest potential 

of runoff generation). For this study, we applied the Topo-SWAT toolbox (Fuka & Easton 2015), an 

automated ESRI ArcMap toolbox, to create a new substitute wetness class layer to cover the Digital 

Soil Map of the World (FAO 2007). Furthermore, we create as well as its lookup tables (Collick et 

al. 2014).  
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 …(2)

where CN is the curve number and could be adjusted by the 
antecedent soil moisture content using daily rainfall series.

Topo-SWAT 

In humid regions, overland runoff is mainly produced by the 
saturation excess runoff mechanism. So, the Topo-SWAT 
provides the CN-VSA method to estimate overland flow and 

redefine the HRUs. In Regular-SWAT, HRUs are composed 
of homogeneous vegetation, soil characteristics, and slope 
classes, whereas in Topo-SWAT, soil topographic index 
(TI) was combined to define the HRUs, which has been 
seamlessly integrated into SWAT representing the VSA 
hydrology and can be derived from digital elevation model 
(DEM). TI estimates runoff based on the digital elevation 
and topography data (Suliman et al. 2015). And the equation 
can be obtained (Easton et al. 2008): 

 ln( )
tan

TI α
β

=  …(3)

where a is the upslope contributing area of a given point (m), 
tan b is the slope gradient. 

The TI layer, representing VSA hydrology in Topo-SWAT, 
is calculated applying the DEM and ArcGIS hydrology tools. 
And then it is reclassified to generate a new class layer, i.e., 
ten wetness index classes with equal area. They range from 
one wetness class (10% of the catchment with the lowest 
potential of runoff generation) to ten classes (10% of the 
catchment with the highest potential of runoff generation). 
For this study, we applied the Topo-SWAT toolbox (Fuka & 
Easton 2015), an automated ESRI ArcMap toolbox, to create 
a new substitute wetness class layer to cover the Digital Soil 
Map of the World (FAO 2007). Furthermore, we create as 
well as its lookup tables (Collick et al. 2014). 

Input Data 

To derive the SWAT model, a large number of input data 
would be required, including temporal (hydrometeorology 
data) and spatial data (soil characteristics, land use, and 
topographic data). 

Temporal data

Hydrological Data: Daily streamflow series data for the 
XMG Reservoir dam gauge station in the study catchment 
were collected from the Huangbaihe Catchment Authority.

Weather Data: Daily rainfall series, temperature, wind 
speed, relative humidity, and solar radiation were all needed. 
The measured records for daily rainfall data from the outlet 
station were available for different periods spanning from 
2008 to 2016 and could be used directly. Other precipitation 
datasets were obtained from CMADS 1.1 (The China 
Meteorological Assimilation Driving Datasets for the SWAT 
model) (http://westdc.westgis.ac.cn/). The other meteorologt-
ical elements were generated using SWAT’s weather generA-
ator (WGEN). Weather stations w3231134 and w3261138 
(https://globalweather.tamu.edu/) were included to calculate 
the statistical parameters of WGEN for the study catchment.
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Spatial data

DEM Data: The Digital Elevation Model (DEM) map 
of the XMG Reservoir Catchment was collected from 
the Geospatial Data Cloud website (http://srtm.csi.cgiar.
org/), with a spatial resolution of 3 arc-second (roughly  
90 m). 

Soil Data: In this study, two soil maps were used ini-
cluding the Harmonized World Soil Database (HWSD) 
version 1. 1 (http://westdc.westgis.ac.cn/data/tag/key/
HWSD) and FAO-UNESCO Digital Soil Map of the 
World (DSMW) (http://www.fao.org/geonetwork). HWSD 
is used for Regular-SWAT setup (Fig. 2(a)), with a 1km 
resolution and associated lookup table was obtained for 
the initialization of Regular-SWAT. Three soil groups 
were identified for the delineation in the XMG Reservoir 
Catchment. For Topo-SWAT, DSMW combined with soil 
topographic wetness classes was adopted to generate the  
soil map.

Land Cover/ Land Use Data: This map was downloaded 
from 2015 LANDSAT data and then reclassified using sum-
pervised image classification. There are five different land 
use detected with its lookup table to match the land use 
database of SWAT model, i.e., agricultural field (AGRL for 
SWAT), forest (FRST), bare land (BARR), urban (URBN), 
and water (WATR).

Model Setup, Calibration and Validation

The study area was first separated into multiple sub-catchh-
ments, which described spatially correlation between one and 
another. The boundary of the study catchment was delineated 
applying a threshold area of 1400 ha so that the extracted 

river networks keep consistent with the topographic map. And 
9 sub-catchments were delineated for both two versions of 
SWAT. All layers were projected in the “WGS_1984_UTM_
Zone_49N” coordinate system. And soil types and land use 
were linked with their lookup tables, space databases, and 
attribute databases. Through reclassifying the layers of soil 
types, land cover/use, and slope classes, the sub-catchment 
layer was overlaid to the HRUs layer. The threshold percentd-
age (0%) was adopted for the whole of the databases. But 
due to the different types in soils (Fig. 2), the numbers of 
the HRUs are 250, 173, and 404 for the Regular-SWATH, 
Regular-SWATD, and Topo-SWAT, respectively (Table 1).

Parameters sensitivity analysis is also a major concern 
to model calibration and validation (Cibin et al. 2010). 
Therefore, the calibrated parameters were selected by 
referring to previous literature, recommendations from the 
SWAT manuals (Stehr et al. 2010). The method of sequential 
uncertainty fitting Version 2 (SUFI-2) algorithm (Yang et 
al. 2008) incorporated into SWAT Calibration Uncertainty 
Procedure (SWAT-CUP) program (Abbaspour 2015) was 
adopted for parameter sensitivity analysis, model calibration, 
and validation procedure.

 

 

 

Fig. 2: Soil maps of the XMG Reservoir Catchment (a) Regular-SWAT and (c) Topo-SWAT. 
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Table 1: Differences in total HRUs for the three SWAT models.

Regu-
lar-SWATH

Regular-
SWATD

To-
po-SWAT

Number of  soi l 
types

3 2 20

Number of slope 
classes

4 4 1

Number of HRUs 250 173 404
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Based on data availability, the two models in this study 
were calibrated for streamflow at monthly and daily time 
scales for the period 2010-2013 after two years of warm-
up, which is to allow parameters to reach equilibrium. The 
following three years, from 2014 to 2016, were used to 
validate models. Nash Sutcliffe coefficient of Efficiency 
(NSE) was selected as the objective function, due to it can 
reflect the overall model fit (Nash & Sutcliffe 1970). The 
following parameters were identified for Regular-SWAT and 
Topo-SWAT (Table 2). 

Performance Evaluation

Both graphical and statistical approaches should be applied 
to evaluate the model performance (Nyeko 2015). The 
graphical method, such as streamflow hydrographs, can 
provide a visual and direct comparison between the observed 
and simulated datasets, which could detect the trends of 
variation in magnitude and timing of the flows. Besides the 
graphical approach, the agreement between simulated and 
observed data was also evaluated based on statistical indicad-
tors, including the NSE coefficient, the RMSE-observations 
standard deviation ratio (RSR), and percent bias (PBIAS). 
The performance of the model for flows was divided into 

four categories at monthly and daily time scales based on 
the research of (Moriasi et al. 2007). 

RESULTS

Simulation Using the Un-Calibrated Models

Two different versions of SWAT models were established 
and then compared with each other based on the initial 
parameters. Fig. 3 graphically displays the results for tor-
tal monthly streamflow using both un-calibrated SWAT 
models. In dry months like November 2012 to February 
2013, and November 2015 to February 2016, both models 
overestimated base flow. Except for 2016, Topo-SWAT 
overestimated peak flow rate the most, whilst Regular-SWAT 
underestimated. The model comparison statistics values with 
original findings parameter analysis were presented in Table 
3. For the calibration period (from 2010 to 2013), the flow 
output simulated by Topo-SWAT has higher NSE and PBIAS 
than the Regular-SWAT flow outputs, but for the validation 
period (2014-2016), the NSE value of Regular-SWAT is 
higher. In general, the initial parameter result showed that 
Topo-SWAT (saturation excess) has better output finding 
than Regular-SWAT (infiltration excess) in the entire study 

Table 2: Parameters sensitivities and calibrated parameters of Regular-SWAT and Topo-SWAT using SUFI-2.

Regular-SWAT Topo-SWAT

Parameters Parameter sensitivity Optimal 
value

Parameters Parameter sensitivity Optimal value

t-Stat p-value Ranking 
value

t-Stat p-value Ranking 
value

r_SOL_AWC.sol -23.4 0 1 -0.16 r_CN2.mgt 11.6 0 1 -0.23

r_CN2.mgt 19.36 0 2 0.31 r_SOL_AWC.sol -4.8 0 2 -0.34

v_CANMX.hru -12.69 0 3 3.91 v_ALPHA_BF.gw 3.96 0 3 0.47

v_ALPHA_BF.gw 8.63 0 4 0.94 v_CANMX.hru -3.63 0 4 5.35

v_ESCO.hru 6.48 0 5 0.32 v_SLSUBBSN.hru -2.61 0 5 35.85

v_HRU_SLP.hru 5.25 0 6 0.25 v_SMTMP.bsn -2.33 0.02 6 10.45

v_SLSUBBSN.hru -4.65 0 7 110.84 v_ESCO.hru 2.26 0.024 7 0.99

r_SOL_Z.sol -4.38 0 8 -0.83 v_CH_N2.rte -2.05 0.04 8 0.03

v_RCHRG_DP.gw 3.97 0 9 0.74 r_SOL_Z.sol -1.61 0.107 9 -0.21

v_CH_K2.rte -3.88 0 10 64.79 v_CH_K2.rte -1.57 0.12 10 59.84

v_OV_N.hru -3.68 0 11 4.11 v_HRU_SLP.hru 1.41 0.15 11 0.33

v_EPCO.hru -2.46 0.014 12 0.27 v_SMFMX.bsn 1.25 0.21 12 12.46

a_GW_DELAY.gw 2.31 0.0212 13 2.89 v_OV_N.hru -1.225 0.22 13 19.44

v_CH_N2.rte -2.3 0.0215 14 0.04 v_EPCO.hru -1.223 0.221 14 0.42

v_SMFMN.bsn -1.72 0.08 15 10.68 r_SOL_K.sol -1.03 0.3 15 0.34

r_SOL_BD.sol 1.64 0.1 16 -0.47 v_RCHRG_DP.gw 0.927 0.35 16 0.76

v: the initial value of the parameter is replaced by an active value; a: an active value is added to the initial value; r: the initial value is changed by multi -
plying (1+ a given value) (Abbaspour et al. 2007).
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period from 2010 to 2016 (NSE: 0.63 vs. 0.54, PBIAS: 7.22 
vs. 20.06, and RSR: 0.61 vs. 0.68). 

Temporal Simulation Using Calibrated Models 

Two different versions of SWAT models were calibrated 
and validated, which were Regular-SWAT using the HWSD 

soil data and Topo-SWAT using the DSMW soil data. In the 
SWAT model, there is a multitude of parameters, in which 
the sensitivity is different for the specific region. Hence, 
sensitivity analysis should be first performed to detect a 
candidate set of parameters most influencing the hydrological 
processes. Then data from the period 2010-2013 were used  
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for calibration, and data from 2014 to 2016 were applied 
for validation at daily and monthly time scales. Finally, the 
runoff volume was also evaluated.

Sensitivity Analysis

Sensitivity analysis results for daily flows using Regular-
SWAT and Topo-SWAT given by the SUFI-2 algorithm were 
listed in Table 2. Based on the result, the parameters related 
to surface runoff, the soil water storage, and groundwater are 
highly sensitive for two versions of SWAT (Table 2), including 
soil available water storage capacity (SOL_AWC), runoff 
curve number for moisture condition II (CN2), baseflow rer-
cession factor (ALPHA_BF) and maximum canopy storage 
(CANMX). Therefore, it is concluded that the most sensitive 
parameters for the two models are consistent, but the ranking 
value is different. Based on the results of sensitivity analysis, 
both calibrated and validated models were performed at the 
outlet of the study catchment at both daily and monthly scales.

Daily Data Simulation

In this study, the evaluation of model performance includ -
ed not only visual comparisons between the simulations 
and measurements but also statistical methods. The final 
parameter values after the model calibration were listed 
in Table 2. As shown in Table 2, the most of optimized 
parameter values were different mainly due to the distinct 
runoff generation mechanism 

Fig. 4 graphically illustrated the observed and simulated 
discharge values at the daily time scale. It could be seen that 

the simulation and observation had a similar trend as well as 
the timing of the peak flows. Whereas, some simulated peaks 
were underestimated like 7 June 2010, 2 September 2014, 
and 2 June 2016. The greatest underestimation was located 
on 2 September 2014, which is more than 51% for both two 
models and during the 2 June 2016, the underestimation was 
approximately 29% for Topo-SWAT and 31% for Regular-
SWAT. And some peak flows were greatly overestimated 
during some flood periods, e.g. in 18-21 July 2013. In 
general, daily peak flows were not matched well.

Standard regression plot (Fig. 5) showed that measured 
and simulated stream flows at daily time step for both periods 
of calibration and validation. As shown in these scatter plots, 
the aggregations of the daily stream flows were from 0 to 20 
m3.s-1 for the calibration period and between 0 and 30 m3.s-1 
for the validation period. It indicated that the dispersion of 
Regular-SWAT and Topo-SWAT values were consistent for 
calibration and validation.

The coefficient of determination (R2) described the 
variance portion between the measured and simulated 
streamflow. The range value of R2 is between 0 and 1. The 
higher value, the lower the error variance. The reported 
performance rating for R2 is acceptable when its typical 
values exceed 0.5 (Santhi et al. 2001). In the calibration pe)-
riod, R2 was obtained as 0.59 and 0.57 for Topo-SWAT and 
Regular-SWAT, respectively, which indicated an acceptable 
result. While the values of 0.69 and 0.72 for R2 for Topo-
SWAT and Regular-SWAT models indicated a good fit 
during validation. In general, the simulation result of the 
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Topo-SWAT was more accurate in the calibration period, on 
contrary, the Regular-SWAT exhibited good performance in 
the validation period.

The statistical indexes of mean, median, standard devia -
tion, maximum and minimum were compared between simum-
lations using Regular-SWAT and Topo-SWAT and measured 
time series. The results were listed in Table 4. It could be 
seen that the mean, median, and minimum values obtained 
for Topo-SWAT were closer to the measured data, while 
Regular-SWAT underestimated the minimum streamflow, but 
the maximum was closer for calibration. By comparison, in 
the validation period, the Regular-SWAT had closer values 
to the observed data.

Monthly Time Series Simulation

For the calibration (Jan 2010-Dec 2013) and validation 
(Jan 2014-Dec 2016) periods, Fig. 6 compared graphically 
observed and simulated monthly data for Regular-SWAT 
and Topo-SWAT models. The trend of simulated monthly 
discharge was similar to that of the measurements and peak 
flow timing was usually also well simulated during most 

months. Whereas, the streamflow for the peak was overt-
estimated in 2012 for calibration, in 2015 and 2016 during 
validation, respectively.

The results of model statistics for observations and 
simulations at a monthly scale using the two models were 
compared in Table 5. It could be seen that the Topo-SWAT 
simulated more accurately for calibration with the values of 
NSE, RSR, and PBIAS for Topo-SWAT were 0.69, 0.55, and 
7.92, respectively, compared with the statistical values for 
Regular-SWAT. Regular-SWAT, on the other hand, performs 
better statistically during the validation period, with NSE, 
PBIAS, and RSR values of 0.88, 1.71, and -15.54, respec-
tively. For both models, the values of assessment markers 
improved significantly at the monthly time step. 

A comparison result of monthly annual streamflow for 
two models was exhibited in Fig. 7. It showed that the peak 
flow for Topo-SWAT and Regular-SWAT occurred in July, 
but the observed peak flow was in August. That may be 
because of the rainfall input for both SWAT models. The 
majority of peak flows occur during June to September, 
which just is the wet season. During the months from Janh-

Table 3: Evaluation indicators of the monthly streamflow based on the initial parameters.

SWAT version Calibration (2010-2013) Validation (2014-2016) Total period (2010-2016)

NSE PBIAS RSR NSE PBIAS RSR NSE PBIAS RSR

Regular-SWAT 0.39 44.1 0.78 0.65 12.52 0.59 0.54 29.06 0.68

Topo-SWAT 0.65 21.61 0.59 0.61 -8.61 0.63 0.63 7.22 0.61

Table 4: Statistical index obtained via two models during the periods of calibration and validation.

Statistics Measured Regular-SWAT Topo-SWAT

Calibration Validation Calibration Validation Calibration Validation

Mean (m3/s) 4.36 5.27 3.62 5.18 4.01 6.09

Median (m3/s) 2.44 3.08 2.02 3.19 2.41 3.65

Standard deviation 6.83 8.82 5.84 7.69 5.6 8.33

Minimum (m3/s) 0.78 0.79 0.38 0.74 0.79 1.23

Maximum (m3/s) 82.3 144.15 79.07 107.4 80.88 109

NSE - - 0.58 0.72 0.59 0.69

RSR - - 0.65 0.53 0.64 0.59

PBIAS - - 16.9 1.64 7.91 -15.67

Table 5: Evaluation indicators of Topo-SWAT and Regular-SWAT performance for monthly streamflow predictions after calibration.

SWAT versions Calibration (2010-2013) Validation (2014-2016)

NSE RSR PBIAS NSE RSR PBIAS

Regular-SWAT 0.65 0.59 16.99 0.88 0.35 1.71

Topo-SWAT 0.69 0.55 7.92 0.73 0.52 -15.54
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Fig. 6: Observed and simulated flow at monthly scale by two models for a calibration period of 2010-2013 and validation period of 2014-2016.

 

 

 

Fig. 7: Observed and simulated hydrograph in mean monthly streamflow for 2010-2016. 
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Fig. 7: Observed and simulated hydrograph in mean monthly streamflow 
for 2010-2016.

uary to June, and in August, September, and December, the 
simulated streamflow of Regular-SWAT was entirely lower 
than the observed streamflow. While in July, October, and 
November, the simulated was higher than the observed. For 
Topo-SWAT, the simulated streamflow in January, February, 
May to July, and October to December was higher than the 
observed streamflow. In contrast, in other months (March, 
April, August, and September), the observed was higher. In 
general, the result of Topo-SWAT was closer to the observed 
streamflow.

Runoff Volume

Fig. 8 illustrated the cumulative daily runoff volume for the 
study catchment in calibration Fig. 8 (a) and validation Fig. 8 
(b) periods. Fig. 8 (a) showed that the simulated daily runoff 
volumes all have been underestimated over the calibration 
period for the two models. But, the simulated runoff volume 
of Topo-SWAT was much closer to observed values than that 
of Regular-SWAT. For the validation period (Fig. 8 (b)), the 
performances of the two models were satisfactory in the 
year 2014. Beyond that, the simulated daily runoff volume 
had been overestimated using Topo-SWAT. In contrast, the 
Regular-SWAT underestimated from Sep 2014 through Dec 
2016.

A comparison of annual runoff volumes between 
observed and simulated applying Regular-SWAT and 
Topo-SWAT was shown in Fig. 9. The result showed that 
the simulated annual runoff volume using Topo-SWAT and 
Regular-SWAT had been underestimated for 4 years and 5 
years, respectively, which was different in the year 2015. 
The simulated values applying Topo-SWAT were higher 
than observed runoff volume, while the result calculated by 
Regular-SWAT was lower in 2015. Furthermore, two years of 
annual runoff volumes using Topo-SWAT had been simulated 
to be profoundly overestimated (2015 and 2016).

Spatial Distribution of Runoff Generation Areas Using 
Calibrated Models

What is more interesting is the difference in the predicted 
runoff distribution using the Regular-SWAT and Topo-SWAT 
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in the study catchment. The information about the spatial 
distribution and extent of runoff source areas is important 
for watershed management. For instance, Fig. 10 showed 
the predicted spatial distribution of runoff generation for one 
storm event in September 2014 (193 mm). The darker shades 
in the areas, the higher runoff generation. Regular-SWAT 
predicted the most proportion of catchment would generate 
more runoff, and the different locations were significantly 
affected by differences in soil types and land cover/use. 
However, for the same rainfall event, Topo-SWAT calculated 

a majority of the catchment producing less surface runoff, and 
the distribution of runoff generation reflected the topographic 
position, the topography is the main element associated with 
runoff generation. In general, higher runoff generation was 
related to HRUs with higher wetness index classes, which 
were low-lying wet areas and closer to the streams. 

DISCUSSION

Sensitivity Analysis

The sensitivity of parameters is always analyzed before 
calibration, but there is no common guide to identify the sen -
sitivity bound. (Van Griensven et al. 2006) pointed out that 
parameter sensitivities were different in specific catchments 
because of the distinct watershed characteristics including soil 
properties, land use, and slope types. So, the parameters used 
to calibrate in this catchment may be different. Based on the 
previous research by (Yang et al. 2012), the main hydrological 
processes and parametric interactions should firstly be 
identified, and then the model setup should also be examined to 
ensure the accuracy of the calibration. In general, the sensitive 
parameters were those related to physical processes including 
surface runoff, evapotranspiration, groundwater, and channel 
routing. In this study, the parameters related to surface runoff 
generation, soil water movement, and groundwater are highly 
sensitive for two versions of SWAT (Table 2). In the most 
sensitive parameters, CANMX is mainly determined by the 
leaf area index of the vegetation and precipitation can only 
reach the soil when the canopy storage is filled (Guse et al. 
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Fig. 9: Annual runoff volume calculated by Topo-SWAT and  
Regular-SWAT.

 

 

 

Fig. 7: Observed and simulated hydrograph in mean monthly streamflow for 2010-2016. 
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Fig. 8: Cumulative daily runoff volume for periods of calibration (a) and validation (b).
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2013), which is significant to affect infiltration, surface runoff, 
and evapotranspiration in the highly vegetated catchment 
(Nyeko 2015). Baseflow alpha-factor (ALPHA_BF) is an 
index reflecting the changes in recharge with groundwater 
flow. SOL_AWC is used to calculate the field capacity of each 
soil layer by adding to the wilting point. Curve number (CN) 
primarily influences the amount of runoff generation, which 
is a relatively sensitive parameter for most of the catchments 
(Noori & Kalin 2016). The ranking of other parameters was 
different due to the rainfall-runoff generation mechanism. 
Hence, the results suggested the sensitivity analysis was 
important before the model calibration (Demaria et al. 2007). 
Consequently, the final parameter values should be checked to 
be in line with the catchment characteristics and corresponding 
hydrologic processes. 

Simulation Results

From the land use map of XMG Reservoir Catchment, the 
forest is the mainland cover (88.37%), which can delay the 

surface flow and generate substantial subsurface flow, due to 
forest surface soils having high infiltration capacities (Jiang 
et al. 2012). And there is a great quantity of rainfall (1010 
mm.a-1). Thus, in this catchment, the saturation excess runT-
off generation approach may be more appropriate than the 
infiltration excess runoff mechanism, which could be proved 
by the statistical indexes of model performance (Table 3). 
And the simulation result using un-calibrated Topo-SWAT 
was slightly better than that by un-calibrated Regular-SWAT 
(Fig. 3), so we conclude that the topography is a major 
factor in hydrological processes. But, after the much more 
complex parameter sensitivity and calibration, the simulation 
by Regular-SWAT is similar to that of Topo-SWAT in the 
calibration period (Fig. 6 & Fig. 4). 

In a few cases (2010, 2014, and 2015), the peak flows 
were underestimated applying two SWAT models (Fig. 4). 
This may be due to soils on mountainous forested slopes can 
absorb a large amount of precipitation in the wet season and 
later slightly releasing water from the storage to be as base 
flow. One possible reason may attribute to the uncertainty of 
input data, such as meteorological data. And only one weather 
station was in this study catchment, the other three were 
outside the catchment. Therefore, the spatial distribution of 
precipitation was not representative which might lead to not 
so rigorous calibration of the model (Masih et al. 2011). The 
other possible reason may be the pattern of precipitation had a 
considerable effect on the simulated peak flows. Furthermore, 
the physical processes of runoff generation over a watershed 
in nature are extremely complicated and exhibit considerable 
temporal and spatial variability.

The different spatial distribution of runoff predicted by 
the two models is exhibited in Fig. 10. For the same large 
rainfall event, Regular-SWAT predicted the majority of the 
catchment generating high runoff, whereas Topo-SWAT 
predicted a majority of the catchment generating less surface 
runoff and the near-stream regions producing more runoff in 
line with the other researches. In Topo-SWAT, the soil weth-
ness index and topography are considered to model runoff, 
in other words, the degree of saturation and VSA hydrolog -
ical principles are taken into account. And it assumes that 
HRUs located at the flat, near river would become moist 
and contribute a large amount of runoff, due either to the 
hydraulic gradient decreased by shallower slope, or maybe 
the accumulation of lateral flow from upland regions (Collick 
et al. 2014). Whereas, Regular-SWAT treats these HRUs the 
same as any upland region with the same soil and land use.

CONCLUSION

Two versions of the SWAT model, Regular-SWAT and Too-
po-SWAT, were established for the XMG Reservoir Catchl-

 

 

 
Fig. 10: Spatial distribution of runoff generation areas predicted by Regular-SWAT and Topo-
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lar-SWAT and Topo-SWAT.
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ment, to compare their abilities to simulate stream flows and 
to identify critical runoff generation regions, which could 
provide important information for temporal and spatial water 
management. Each performance and applicability were suca-
cessfully examined by parameter sensitivity analysis, model 
calibration, and model validation. The main conclusions are 
obtained as follows:

 (1) based on sensitivity analysis results, SOL_AWC, CN2, 
CANMX, and ALPHA_BF were the most sensitive 
parameters for both two models.

 (2) Both Regular-SWAT and Topo-SWAT models provided 
reasonable simulations of stream flows. Statistical 
comparisons revealed good model performance due 
to values of NSE for monthly and daily streamflow in 
calibration and validation periods being larger than 0.65, 
0.55, respectively. Nevertheless, some discrepancies 
were evident between the observations and simulations 
of high stream flows. 

 (3) By contrast, the highest flow simulated by Topo-SWAT 
was better than that of Regular-SWAT, while Regub-
lar-SWAT had better model performance in the period 
of validation.

 (4) Regular-SWAT mostly underestimated the annual runoff 
volume, while Topo-SWAT provided a slightly better 
prediction.

 (5) The results of spatial runoff source areas demonstrate 
that the Topo-SWAT is slightly better due to it reflecting 
the effect of topography and soil characteristics.
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