
   2024pp. 2025-2038  Vol. 23
p-ISSN: 0972-6268 
(Print copies up to 2016) No. 4  Nature Environment and Pollution Technology

  An International Quarterly Scientific Journal

Original Research Paper

e-ISSN: 2395-3454

Open Access JournalOriginal Research Paperhttps://doi.org/10.46488/NEPT.2024.v23i04.010

Integrating Satellite Data and In-situ Observations for Trophic State Assessment 
of Renuka Lake, Himachal Pradesh, India
Sujit Kumar Jally1† , Rakesh Kumar2 and Sibabrata Das3

1School of Geography, Gangadhar Meher University, Sambalpur, Odisha, India
2Indian Council of Forestry Research and Education, Dehradun, India
3Department of Geography, Ravenshaw University, Cuttack, Odisha, India
†Corresponding author: Sujit Kumar Jally; sujit.graphy@gmail.com

       ABSTRACT
The present study focuses on estimating the Trophic State Index (TSI) of Renuka Lake, 
the smallest Ramsar site in India, utilizing in-situ observed Secchi disk transparency (SDT) 
and satellite data. Site-specific algorithms were developed by establishing the relationship 
between the spectral band ratio of Landsat 8 OLI and LISS-III with that of in-situ measured 
SDT data. Notably, the exponential regression model outperformed other regression models 
(linear, logarithmic, polynomial, and power), achieving a better model output (R2=0.94). 
Additionally, water quality parameters, namely pH and dissolved oxygen (DO), were 
measured using the TROLL 9500 multi-parameter instrument. Various interpolation methods 
were applied to the in-situ data, with the exponential regression model yielding the most 
accurate results.This method was subsequently selected to generate two-dimensional 
water-quality images of Renuka Lake. The combined analysis of in-situ and satellite-derived 
trophic status indicates the eutrophic to hypereutrophic condition of the lake’s eastern and 
western parts. Satellite imagery spanning 2010-2019 consistently reveals a eutrophic state 
in the lake, with fluctuations in intensity over the period. The sustained eutrophic condition 
is attributed to escalating human-induced activities surrounding the lake, particularly in the 
western region.

INTRODUCTION

The Himalayan lakes hold unique significance as self-
sustaining entities supporting harmonious freshwater 
ecosystems, vital for promoting aquatic biodiversity. 
Lake water, an indispensable natural resource for both 
human populations and their environments, faces global 
degradation due to natural processes and escalating human-
induced activities (Brönmark & Hansson 2002, Mishra 
& Garg 2011). This degradation of lake water quality 
stands as a pressing global water issue, especially given 
the lakes’ pivotal role as lifelines for both humans and 
ecosystems (Rast 2009, Mohamed M.F 2015, Gholizadeh 
et al. 2016, Sent et al. 2021). The increasing trophic 
status of lakes serves as an indicator of this degradation, 
as highlighted in existing literature, attributing it to 
factors such as organic and inorganic pollution, siltation, 
eutrophication, morphological changes, and the impact of 
climate change, notably manifested through rising water 
temperatures (Brönmark & Hansson 2002, Dudgeon et al. 
2006, Mabwoga et al. 2010, Mishra & Garg 2011, Torbick  
et al. 2013).

The quality of water not only influences the development 
of organisms but also determines their survival. Therefore, 
it is crucial to assess the lake’s health through water quality 
measurements. Various monitoring methods are employed 
for a comprehensive study to fully understand the lake’s 
water quality and ecosystem (Hestir et al. 2015, van 
Puijenbroek et al. 2015, Bresciani et al. 2019, Bonansea et 
al. 2019, Cahalane et al. 2019, Torres-Bejarano et al. 2020). 
The assessment of trophic states of lakes through in-situ 
measurements has long been a cornerstone of limnological 
research. Studies by Carlson (1977) and Vollenweider 
(1968) laid the foundation for this approach, emphasizing 
the relevance of key parameters such as chlorophyll-a, total 
phosphorus, and Secchi disk transparency. The Secchi disk 
transparency test, introduced by Carlson (1977), emerged as 
a fundamental tool in categorizing lakes into trophic states. 
This method involves lowering a white disk into the water 
until it disappears, providing a measure of water clarity.

While in-situ methods are crucial for understanding 
the ecological dynamics of lakes, they come with inherent 
limitations. One major constraint lies in the spatial coverage, 
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as in-situ measurements are often point-specific and labor-
intensive. The challenge of extrapolating localized data to 
represent entire lake ecosystems is acknowledged by Hestir 
et al. (2015). Additionally, the temporal resolution of in-
situ observations may not capture short-term fluctuations 
in trophic conditions, as noted by Bresciani et al. (2019) 
and Bonansea et al. (2019). Despite these limitations, 
the wealth of information obtained through in-situ 
measurements remains invaluable for validating satellite-
derived algorithms and enhancing the overall accuracy 
of trophic state assessments. In recent years, the use of 
satellite-based observations alongside traditional in-situ 
methods has emerged as a powerful approach for studying 
the trophic states of lakes. This integrated methodology offers 
a comprehensive understanding of water quality dynamics. 

Numerous studies have recognized the limitations of 
relying solely on in-situ data and have explored the potential 
of satellite observations to bridge gaps in lake monitoring. 
Remote sensing applications have proven effective in both 
terrestrial and aquatic ecosystem monitoring (Andrew et al. 
2014, Walshe et al. 2014, de Araujo Barbosa et al. 2015). 
Optical satellite data is used to monitor water quality 
indicators, including trophic status, suspended sediment 
concentration, turbidity, and chlorophyll content. Various 
studies have utilized different band ratios of satellite data 
(Landsat TM, Landsat ETM, Landsat-8 OLI, LISS-III, 
SeaWiFS, MERIS, MODIS, Sentinel-2A, NOAA AVHRR) 
to assess water quality, with the Landsat series data being 
particularly successful globally due to its spatial, temporal, 
spectral resolution, and cost-effectiveness in water quality 
assessment (Khorram  & Cheshire 1985, Harrington et al. 
1989, Koponen et al. 2002, Wang et al. 2004, Usali & Ismail 
2010, Bilgehan et al. 2010, Mishra & Garg 2011, Palmer et 
al. 2015). Satellite data offers a synoptic perspective and 
spatiotemporal coverage over wider areas, providing features 
unattainable during ground truth observations.

The significance of this study lies in its approach to 
assessing the trophic state of Renuka Lake, the smallest 
Ramsar site in India, by integrating satellite-based 
observations with traditional in-situ methods. Several 
studies have contributed to understanding Renuka Lake’s 
limnology. Previous works by Das & Kaur (2001) and Das 
et al. (2008) explored major ion chemistry and geochemistry, 
providing insights into weathering processes affecting 
the lake’s trophic state. Subsequent studies by Singh & 
Sharma (2012) and Kumar et al. (2019) focused on trophic 
status assessment, contributing valuable information on 
local ecological dynamics. However, these studies relied 
solely on traditional in-situ methods to explore the trophic 
condition of Renuka Lake. Unlike these predecessors, our 
study is novel and unique as it employs advanced satellite-

based observations, a methodology successfully used in 
various lake studies but not yet applied to Renuka Lake, 
the smallest Ramsar lake site. By combining satellite 
technology with in-situ observations, our research aims to 
provide a more comprehensive understanding of Renuka 
Lake’s trophic state. This innovative approach not only adds 
a new dimension to the current understanding of the lake’s 
dynamics but also addresses a significant research gap in 
the monitoring and assessment methodologies applied to the 
unique ecological setting of Renuka Lake. The integration 
of satellite-based observations is expected to enhance the 
precision and scope of trophic state assessments, ultimately 
contributing to more effective conservation and management 
strategies for this ecologically vital Ramsar site.

MATERIALS AND METHODS

Study Area

Renuka Lake is an oval-shaped lake situated in the foothills of 
the Lesser Himalaya, with geographical coordinates between 
30°36′30′′ N latitude and 77°27′6′′ E longitude in the Sirmaur 
district of Himachal Pradesh (Fig. 1). The lake is 204 m wide, 
1.05 m long, and 13 m deep, with a catchment area of 254.3 
hectares. The subtropical climate of the lake area receives an 
annual rainfall of 150 to 199.9 cm (Das & Kaur 2001). The 
lake is surrounded by Lesser Himalayan rocks (Das et al. 
2008) and flows along a riparian path between two forested, 
steep hill slopes. Renuka Lake is connected to Parashram Tal 
through a narrow channel, both located along the course of the 
Giri River. The majority of the lake’s water is sourced from 
small watersheds, collected as surface runoff or groundwater 
seepage. The lake continuously discharges water to low-lying 
areas through Parshuram Taal. Declared a Ramsar site and 
protected as a National Wetland on 8th November 2005, 
the lake hosts rare, endangered plant and animal species, 
attracting large populations of avifauna during winter from 
Siberia and Eastern Europe. A popular tourist attraction in 
Himachal Pradesh, the lake’s natural beauty, boating facility, 
and abundant wildlife draw thousands of visitors annually. 
The lake is a socio-economic lifeline for the mountain 
people directly or indirectly dependent on its resources. The 
Wildlife Wing of the Himachal Pradesh Forest Department 
implements various development programs to safeguard 
the lake ecosystem and monitor its condition through water 
quality evaluation.

Satellite Data Collection and Processing

One critical aspect of the satellite and field data-based 
integrated approach lies in the selection of suitable satellite 
platforms and sensors. This study utilized remotely sensed 
satellite imagery from Landsat-8 OLI for 2013-2020 and 
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LISS-III for the 2010-2012 period. Cloud-free continuous 
data was available for the post-monsoon season only, so 
only data of this season (October to December) has been 
used and analyzed.  The Landsat-8 OLI data is chosen 
in this study due to its improved sensor features over the 
previous Landsat series. The Resourcesat-2 LISS-III and 
Landsat-8 OLI (Operational Land Imager) satellite data 
are obtained from the National Remote Sensing Centre 
(NRSC), Hyderabad, India, and the USGS Earth Explorer site 
(USGS Earth Explorer 2023), respectively. The integration 
of satellite data with in-situ observations requires careful 
consideration of atmospheric correction and image pre-
processing to ensure reliable results. The spectral image 
processing and analysis were conducted using ERDAS 
Imagine software. The Landsat-8 OLI radiance image was 
obtained using equation 1 (USGS 2023), and similarly, the 
Resourcesat-2 LISS-III radiance image was obtained using 
equation 2 (Robinove 1982).

 L = M × QCAL + A …(1)

Where,

L = cell value as radiance

M = multiplicative factor in (W/m2sr*µm)/DN

A = the additive factor in (W/m2sr*µm)

Qcal = quantized and calibrated standard pixel values 
(DN)

 Lλ = (Dn/Dmax) * (Lmax-Lmin) + Lmin.. …(2)

Lλ = radiance in a single band

Dn = digital value of a pixel

Dmax = maximum digital number

Lmax = maximum radiance measured at detector saturation 
in (mW cm-2 sr-1)

Lmin = minimum radiance measured at detector saturation 
in (mW cm-2 sr-1)

In-Situ Data Collection

For in-situ data collection, field observation data, including 
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Fig. 1: Landsat-8 OLI satellite map showing water sampling locations in the Renuka Lake 
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Fig. 2: Use of Secchi disk in the Renuka Lake. 

 
Table 1: In-situ data collected over Renuka Lake on 28 October 2019. 

Station Latitude Longitude SDT[m] pH DO (Dissolved Oxygen) Time 
1 30.60972 77.45027 0.98 7.12 7.42 7.30 a.m 
2 30.60975 77.45138 1.24 7.38 7.49 7.37 a.m 
3 30.61028 77.45139 1.50 7.31 7.58 7.43 a.m 
4 30.61028 77.45444 1.30 7.21 7.62 7.52 a.m 
5 30.61000 77.45611 1.42 8.11 9.87 7.58 a.m 
6 30.61000 77.45889 1.32 7.63 8.26 8.05 a.m 
7 30.60944 77.45972 1.30 8.82 9.47 8.13 a.m 

 

8 30.60944 77.46139 1.10 8.11 8.01 8.21 a.m 

Fig. 2: Use of Secchi disk in the Renuka Lake.
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Station Latitude Longitude SDT[m] pH DO (Dissolved Oxygen) Time

1 30.60972 77.45027 0.98 7.12 7.42 7.30 a.m

2 30.60975 77.45138 1.24 7.38 7.49 7.37 a.m

3 30.61028 77.45139 1.50 7.31 7.58 7.43 a.m

4 30.61028 77.45444 1.30 7.21 7.62 7.52 a.m

5 30.61000 77.45611 1.42 8.11 9.87 7.58 a.m

6 30.61000 77.45889 1.32 7.63 8.26 8.05 a.m

7 30.60944 77.45972 1.30 8.82 9.47 8.13 a.m

8 30.60944 77.46139 1.10 8.11 8.01 8.21 a.m

9 30.60982 77.45266 1.40 8.01 9.47 8.32 a.m

10 30.60976 77.45389 1.33 7.32 10.57 8.41 a.m

11 30.60973 77.45511 1.21 7.63 9.89 8.49 a.m

12 30.61010 77.45741 1.40 8.53 8.32 8.57 a.m

13 30.61069 77.45795 1.21 7.48 8.12 9.08 a.m

14 30.61029 77.45827 1.05 7.43 8.35 9.17 a.m

15 30.61050 77.45896 1.23 7.13 6.68 9.26 a.m

16 30.61024 77.45982 1.50 6.98 8.92 9.35 a.m

17 30.61019 77.46079 1.32 7.84 9.89 9.44 a.m

18 30.60975 77.46036 1.43 7.49 10.34 9.55 a.m

19 30.60851 77.46192 1.34 7.30 6.99 10.05 a.m

20 30.60790 77.46379 1.50 7.27 7.56 10.14 a.m

21 30.60784 77.46503 1.31 7.23 7.49 10.23 a.m

22 30.60735 77.46451 1.30 7.09 6.53 10.32 a.m

23 30.61027 77.45235 1.32 7.65 8.32 10.41 a.m

24 30.61002 77.45324 1.30 7.96 7.69 10.50 a.m

25 30.61002 77.45431 1.40 7.34 9.74 11.00 a.m

26 30.61021 77.45521 1.20 7.39 8.14 11.09 a.m 

27 30.61071 77.45952 1.31 7.05 6.87 11.20 a.m

28 30.61008 77.45945 1.40 7.41 6.67 11.29 a.m

29 30.60886 77.46169 0.96 7.16 7.56 11.38 a.m

30 30.60947 77.45352 1.30 7.89 10.32 11.47 a.m

31 30.60825 77.46285 1.02 7.21 7.40 11.54 a.m

32 30.61105 77.45855 0.93 7.11 7.31 11.59 a.m
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post-monsoon season. The lake water is categorized into 
four classes based on the TSI range, as shown in Table 2 
(Fuller & Minnerick 2007). In this study, an algorithm using 
Landsat-8 OLI radiance data was developed to predict the 
SDT of Renuka Lake. Field data collection was synchronized 
with Landsat-8 OLI passes. Fig. 3 illustrates the correlation 
between SDT and the ratio of Landsat-8 OLI bands (OLI-
3:OLI-4). Various regression models (linear, exponential, 
logarithmic, polynomial, and power) were applied in the 
statistical analysis. Among these models, the exponential 
regression model yielded the best result (R²=0.94), as shown 
in Equation 4:

 SDT = 0.5869 exp 0.5783(OLI3/OLI4) …(4)

The Landsat-8 OLI bands 3 and 4 spectral wavelength 
ranges are similar to LISS-III (Linear Imaging Self 
Scanning) bands 2 and 3. Therefore, using LISS-III satellite 
data, Equation (4) can be applied to monitor Secchi disk 
transparency. For the period before 2013, LISS-III data 
were employed for SDT quantification in the absence of 
Landsat-8 OLI data.

In this study, ground-observed data were interpolated 
to create two-dimensional images. Various interpolation 
approaches (Table 3) were tested, and the most effective one 
was selected. Eleven randomly selected points were used to 
assess both the absolute difference (AD) and the absolute 
percentage difference (APD) to determine the agreement 
between the observed and interpolated values. The AD and 

Secchi disk transparency (SDT), pH, and dissolved oxygen 
(DO), were collected during the post-monsoon season of 
2019 at 32 sampling locations across Renuka Lake (Table 
1). Secchi disk transparency (SDT) analysis is a simple and 
cost-effective method for identifying the best indicator for 
water quality. The Secchi disk, a black and white round 
metal disk with an approximate diameter of 20 cm, was 
employed for this purpose. While it was lowered into the 
lake’s water through a calibrated rope, the disk was gradually 
submerged until it became invisible, marking the Secchi disk 
transparency (SDT) at that specific depth (Fig. 2). The in-situ 
collected SDT data of Renuka Lake was used to calculate its 
Trophic State Index (TSI), which classifies lake water into 
four categories: (1) oligotrophic (clean and nutrient-poor), 
(2) mesotrophic (good clarity, moderate nutrient content), (3) 
eutrophic (turbid water, increased nutrient content), and (4) 
hypereutrophic (extremely nutrient-enriched water) (Carlson 
1977). The TSI of sampling locations derived from Secchi 
disk transparency (SDT) data was further used for estimating 
the trophic state of the entire lake by developing a regression 
model with satellite data spectral bands. The pH and DO data 
collected through TROLL 9500 (a multi-parameter water 
quality measuring instrument) were used as two additional 
data to supplement and validate the satellite-derived TSI of 
the lake.

Methodology

The objective of the study was to assess the trophic status of 
Renuka Lake using both field observations and satellite data. 
Therefore, both satellite and ground truth observation data 
were integrated to assess the trophic state of the lake. The 
Secchi disk is widely used by lake management experts for 
monitoring lake water quality. Numerous organizations and 
institutions are actively researching these issues to improve 
water quality, identify challenges, and implement sustainable 
development plans through systematic monitoring efforts      
(Vörösmarty et al. 2010, Gray & Shimshack 2011, Torbick 
et al. 2013, Birk et al. 2012, Birk & Ecke 2014, Lim et al. 
2015). Monitoring lake transparency is vital for lake ecology, 
and the trophic state index (TSI) serves as an essential factor 
in this assessment. The relationship between SDT and TSI 
has been extensively used by researchers for lake water 
quality assessment (Carlson 1977, Paukert & Willis 2003, 
Bio et al. 2008, Mabwoga et al. 2010, Mishra & Garg 2011, 
Sheela et al. 2011, Torbick et al. 2013, Gholizadeh et al. 
2016, Bonansea et al. 2019, Bresciani et al. 2019, Sent et al. 
2021). Equation 3 demonstrates this relationship:

 TSI(SDT) = 10(6 - lnSDT/ln2) …(3)

Both in-situ observations and satellite data were utilized 
for TSI estimation, with in-situ data collected during the 

Table 2: Lake Trophic State and Carlson TSI.

Lake Trophic State Carlson TSI Carlson TSI

Oligotrophic <38

Mesotrophic 38-48

Eutrophic 49-61

Hyper eutrophic >61
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APD values were calculated using Equations 5 and 6 (Melin 
et al. 2007):
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Where x represents the observed value, y is the 
interpolated value, and N is the number of points. Satellite 
data were employed to monitor the trophic status of the lake 
during the post-monsoon season from 2010 to 2019.

RESULTS AND DISCUSSION

The primary objective of this study was to monitor the 
trophic status of the lake using satellite data. Measurements 
of Secchi disk transparency (SDT), dissolved oxygen (DO), 
and pH were conducted during the post-monsoon season 
of 2019. DO, and pH are crucial water quality metrics 
routinely monitored to assess the health condition of water 
bodies (Boavida & Marques 1996, Mullins & Whisenant 
2004, Parinet et al. 2004, Nayak et al. 2004, Riduan et al. 
2009, Azary et al. 2010, Sharma et al. 2010). The field data 
were meticulously analyzed and processed using SURFER 
software. A concerted effort was made to identify the optimal 
interpolation method, and the statistical outcomes comparing 
various techniques are presented in Table 3. The optimal 
interpolation method was determined by assessing how well 
the interpolated values align with in-situ observations. The 

evaluation, based on in-situ observed SDT, is graphically 
represented in Fig. 4(a-k). Statistical comparisons of the 
absolute differences (AD) and absolute percentage differences 
(APD) between measured and extrapolated values at selected 
sites are detailed in Table 3. Upon an overall examination of 
shape and interpolated value range, the Kriging interpolation 
method emerged as the most effective. The AD and APD 
values of Kriging closely align with inverse distance to 
power, natural neighbor, and modified Shephard’s method. 
However, values for inverse distance to power and modified 
Shephard’s method fall outside the acceptable range, and the 
natural neighbor method produces an out-of-shape image, 
along with other approaches. Consequently, the Kriging 
interpolation method is employed for extrapolating field 
data in the present research.

The dissolved oxygen (DO) and pH of water bodies 
exert a significant influence on the spatial and seasonal 
distribution of aquatic species, particularly fish. These 
parameters have direct or indirect effects on various crucial 
limnological characteristics, encompassing clarity, viscosity, 
total dissolved solids, and conductivity (Whitney 1942, 
Araoye 2009). pH, a critical parameter of water bodies, 
supports aquatic life within a specific range conducive 
to optimal growth and survival. Although every aquatic 
species exhibits a preferred pH range, the majority favor a 
pH range of 6.5 to 9.0 (US EPA 1986). Deviations from this 
range induce physiological stress, and extreme pH levels 
can lead to severe consequences, including mortality. The 
concentration of dissolved oxygen (DO) in a water body 
serves as a key indicator for biological livelihood and is 
essential for water quality assessment. Oxygen depletion 
negatively affects aquatic life, influencing their growth. 
Analyzing oxygen levels is crucial for understanding the 
health of aquatic ecosystems, revealing the extent to which 
water has been contaminated, lost organic substances, and 
undergone self-purification (Chapman & Kimstach 1996). 
As a result, measuring the DO of a water body is crucial for 
determining water quality because oxygen is involved in or 
influences virtually all chemical and biological processes. 
The significance of DO in the aquatic ecosystem has been 
examined by numerous researchers (Walker 1979, Carr & 
Neary 2006, Ashraf et al. 2010, Saluja & Garg 2017). It 
is noteworthy that this study does not intend to estimate 
additional water quality parameters, such as Total Suspended 
Matter (TSM), Chlorophyll, and Nutrients. Consequently, the 
analysis is confined to selected water quality parameters, and 
the krigging method is employed to create in-situ observed 
interpolated images of DO, pH, SDT, and Trophic State Index 
(TSI), as illustrated in Fig.5 (a-d). A detailed analysis of these 
water quality parameters is described below. 

Table 3: The different interpolation methods and values of AD and APD 
derived from the observed and interpolated values of SDT. 

Sl. No. Methods AD APD

(a) Kriging 0.018873545 1.443803073

(b) Inverse distance to 
power 

0.027220545 2.329114213

(c) Minimum curvature 0.033879364 2.743505355

(d) Modified Shephards 
Method 

0.019928455 1.569698211

(e) Natural neighbour 0.024400000 1.913597509

(f) Nearest neighbor 0.036363636 2.955635274

(g) Polynomial 
regression

0.119352727 9.543133332

(h) Radial basis function 0.035463818 2.725649744

(i) Triangulation with 
linear interpolation

0.030948273 2.431568419

(j) Moving average 0.126437182 10.11023505

(k) Local polynomial 0.085441273 6.639062398
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Fig. 5(a) depicts varying DO concentrations across 
different areas of the lake during the post-monsoon season 
of 2019. Higher DO levels are observed in some pockets of 
the western part (9.47 mg.L-1), south-western part (10.57 
mg.L-1), and central part (10.34 mg.L-1) of the lake, while 
the lowest DO concentrations are found in the western part 
(7.42 mg.L-1), eastern part (7.49 mg.L-1), and central parts 
(6.87 mg.L-1) of the lake. The range of DO values in the 
present study is from 6.67 to 10.57 mg.L-1, with an average 
DO value of approximately 8.28 mg/L. The maximum 
concentration of DO is found in the southwestern part of the 
lake, attributed to clear water and minimal anthropogenic 
activity (Singh & Sharma 2012, Gupta et al. 2018, Kumar 
et al. 2019). Conversely, the minimum DO levels observed 
in the western, central, and eastern pockets of the lake may 

be attributed to weed growth and anthropogenic activities, 
leading to eutrophic conditions and resulting fish mortality 
in the lake (Das et al. 2001, 2008).

The pH of water serves as an indicator of its acidity or 
alkalinity, gauged through the concentration of hydrogen ions 
(H+) and hydroxyl ions (OH-) in water (Dhillon & Mishra, 
2013). Our observations reveal that the entire lake water 
exhibits a slight acidity to alkalinity. Fig. 5(b) illustrates the 
spatiotemporal pattern of pH concentration across different 
locations during the post-monsoon season. In this study, 
the pH of lake water ranged from a maximum of 8.82 to a 
minimum of 6.98 in October, aligning closely with previous 
observations (Singh & Sharma 2012, Kumar et al. 2019). The 
average pH value during the post-monsoon season was 7.52. 
Some pockets in the western part (7.12), central part (6.98), 
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and the entire eastern part (7.09) of the lake exhibited a lower 
pH concentration. The remaining areas of the lake displayed 
a large variation in pH (7.16 - 8.82), indicating an alkaline 
nature associated with the presence of submerged weeds. 
The uptake of carbon dioxide (CO2) during photosynthesis 
by these weeds may contribute to increased alkalinity in the 
lake water (Suba Rao et al. 1981, Panda et al. 1989, 2008, 
Nayak et al. 2004). Conversely, low pH values suggest a 
slightly acidic character in different locations, potentially 
attributed to pollution, weed decay, and the decomposition 
of carbonaceous material from the deciduous forest around 
the lake/catchment (Singh & Sharma 2012).

The spatiotemporal variability in Secchi disk transparency 
(SDT) during the post-monsoon season was analyzed. 
In-situ observed transparency ranged from 0.93 to 1.5 m, 
with an average transparency of 1.28 m. Fig. 5(c) illustrates 
that certain pockets of the eastern, western, and central 
parts of the lake displayed high transparency, with SDT 
measurements between 1.4 and 1.5 m, potentially due 
to minimal anthropogenic activity. However, pockets in 
the western and central parts exhibited low transparency  
(<1 m), indicating highly polluted water in terms of SDT. 
This could be associated with lower layers mixing with upper 
layers due to upwelling activities, human interference (boating, 
bathing), pollution, soil erosion, weed growth, and the influx 
of stream water from the surrounding drainage basin (Sehgal 
1980, Das et al. 2001, 2008, Singh & Sharma 2012, Gupta et al. 
2018). Some pockets in the eastern parts of the lake exhibited 
shallow depth, turbid water, and widespread weed growth, 
contributing to the overall low transparency. Notably, the 
eastern part of the lake near the Zoo area displayed maximum 
hydrophytes, indicating high productivity.

Renuka Lake exhibits signs of accelerated eutrophication 
due to human activities in the catchment area, resulting in 
high nutrient content and supporting rich biological diversity 
(Melkania 1988). The lake boasts a macro-phytic vegetation 
cover spanning approximately 39,969 square meters. A study 
by Singh & Mahajan (1987) identifies 42 different types 
of macrophytes, with Phragmites, Acorus, Typha, Carex, 
Pontederia, and Veronica being the most common. This 
abundance of macrophytic genera shows the high biological 
diversity of the lake. The nutrient concentration in the 
lake water shows an increasing trend, indicative of rising 
pollution, nutrient-rich water, and planktonic population. 
Given its status as a key indicator of lake health, regular 
monitoring of the Trophic State Index (TSI) is imperative.

TSI is measured using both in-situ observed SDT and 
Landsat-8 OLI satellite data, as depicted in Fig. 5(d). The 
majority of TSI values are highest in some pockets of 
the eastern part (58.46), central part (58.62), and western 
part (58.25) of the lake. However, except for these areas, 
minimum TSI values range from 54.15 to 54.45. The average 
in-situ observed TSI value for the lake is 56.38. Overall, the 
TSI values suggest that the lake water exhibits a eutrophic to 
hypereutrophic condition. A standard set by Caspers (1982) 
deems a lake hypereutrophic if its SDT values fall within the 
range of 0.7-1.5. Following this standard, the SDT values 
for Renuka Lake (0.93-1.5 m) from this study confirm its 
hypereutrophic condition. This finding is supported by a 
previous study by Kumar et al. (2019), which reported SDT 
values within the range of 0.9-1.14 m.

Various optical remote sensing satellite data, including 
Landsat-TM (Brezonik et al. 2005, Olmanson et al. 2008, 
Kulkarni 2011, Torbick et al. 2013), Landsat ETM (Allan et 
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al. 2007, Mishra & Garg 2011), Landsat-8 OLI (Lim et al. 
2015, Lee et al. 2016, Urbanski et al. 2016, Olmanson et al. 
2016, Liu et al. 2019, Jally et al. 2020), LISS-III (Coskun 
et al. 2006, Sheela et al. 2011, Gholizadeh 2016), LISS-IV 
(Mobwoga et al. 2010), Sentinel-2 (Toming et al. 2016, 
Bonansea et al. 20219, Bhangale et al. 2020, Bresciani et al. 
2019, Torres Bejarano et al. 2020, Sent at al. 2021), MODIS 
(Wu et al. 2009, Knight et al. 2012), MERIS (Giardino et 
al. 2014, Mohamed 2015), and Rapid Eye (Fritz et al. 2017, 
Mishra et al. 2018, Avdan et al. 2019, Cahalane et al. 2019), 
have been utilized for the study of water quality assessment 
and eutrophication of the lake.

Landsat-8 and LISS-III satellite data were employed 
to monitor changes in the lake’s trophic status during the 
post-monsoon period of 2010-19. The trophic status was 

analyzed annually, revealing distinct patterns (Fig. 6(a-j)). In 
2010, certain areas in the western, central, and eastern parts 
of the lake exhibited high Trophic State Index (TSI) values, 
indicating eutrophic to hypereutrophic conditions. The 
southwestern and central parts transitioned from oligotrophic 
to mesotrophic. Similar patterns persisted in 2011-12  
(Fig. 6(b, c)), and 2013 saw high TSI values in specific 
pockets of the lake, with the remaining areas demonstrating 
oligotrophic to mesotrophic conditions. The years 2014-15 
(Fig. 6(e, f)) showed high TSI values in the entire eastern part 
and some western pockets, while the central and southwest 
parts indicated mesotrophic to eutrophic conditions. In 
2016-17 (Fig. 6(g, h)), the central and southwest parts 
exhibited mesotrophic conditions, whereas the western 
and eastern parts displayed high TSI values. In 2018 (Fig. 
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Fig. 6(a-j): TSI images derived from Landsat-8 OLI and LISS-III for 2010 to 2019.
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6(i)), a substantial area of the lake showed high TSI values 
(hypereutrophic condition), except for some central pockets. 
2019 (Fig. 6(j)) exhibited TSI patterns similar to 2017 (Fig. 
6(h)).

Tourist-generated garbage and sewage seepage, 
contributing to macrophyte growth, especially in the lake’s 
extreme west where tourist facilities are located, may 
explain the high trophic status observed during different 
years (Sehgal 1980, Das et al. 2001, 2008, Singh & Sharma 
2012, Gupta et al. 2018, Kumar et al. 2019). The decrease 
in lake water transparency during winter months may result 
from the mixing of lower and upper layers due to upwelling 
activity (Sehgal 1980, Gupta et al. 2018). Human activities 
like grazing and road construction accelerate silt flow into the 

lake, as determined at 3.3 mm/year using the Pb210 isotope 
method (Das & Kaur 2001). Despite this, some pockets in 
the central and southwest areas showed fairly clear water 
(mesotrophic) in 2019, possibly due to conservation efforts 
by the lake development authority, including regular cleaning 
of weeds and hydrophytes.

To understand the increasing impact of TSI values in 
the lake, TSI derived from satellite data and Secchi disk 
transparency (SDT) are presented in Fig. 7 and Fig. 8. 
Fig.7 illustrates the average TSI values exhibiting an initial 
increase followed by a decrease with slight fluctuations in 
SDT values. The lowest average TSI values were observed 
in 2015 and 2017. Conversely, Fig.8 depicts a decreasing 
to increasing trend in SDT values from 2010 to 2019. The 
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Fig. 7: Comparison of average TSI from Landsat-8 OLI and LISS-III during 2010-19. 
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minimum transparency was observed in 2010-12. High TSI 
values leading to substantial development of algae, weeds, 
and hydrophytes, coupled with a decline in lake transparency, 
underscore the lake’s extreme nutrient richness, impacting 
its clarity. Table 1 presents in-situ observations, indicating 
the disappearance of the Secchi disc at a depth of less than 
1 meter in certain locations. A comparison of the mean TSI 
value derived from in-situ measurements with that from 
satellite observations for 2019 shows a close correspondence, 
with a difference of only 1.25%. The analysis of Fig. 7 and 8 
reveals that the average in-situ measured TSI pattern aligns 
consistently with TSI values estimated from Landsat-8 OLI 
and LISS-III.

This study, while providing valuable insights into the 
trophic state of Renuka Lake, exhibits certain limitations that 
call for further exploration. Firstly, the focus on key water 
quality parameters, such as SDT, pH, and DO, leaves room 
for additional investigation into other critical contributors to 
the lake’s overall health, including nutrient concentrations, 
chlorophyll, and pollutants. Expanding the scope to 
encompass a broader array of water quality parameters 
would enrich the study’s comprehensiveness. Secondly, the 
paper briefly addresses post-monsoon season data, hinting 
at potential seasonal variability in water quality. A more 
thorough exploration of seasonal dynamics throughout the 
year could enhance our understanding of the lake’s trophic 
state fluctuations and provide a more nuanced portrayal of 
its trophic status. Additionally, investigating the specific 
sources and relative impacts of anthropogenic activities, 
such as tourism and sewage, would contribute depth to the 
study. Furthermore, the research could further advance by 
exploring the integration of diverse data sources beyond 
Landsat-8 OLI, such as UAVs or high-resolution satellite 
imagery, to augment the accuracy and resolution of findings 
and a focus on long-term trends and predictive modeling 
could elevate the precision and forecasting capability of 
future assessments. 

CONCLUSION

In this study, we have demonstrated the utility of remote 
sensing satellite data in enhancing lake research and 
monitoring, specifically focusing on crucial water quality 
metrics, trophic status, and water transparency. The in-

situ measured Secchi Disk Transparency (SDT) indicates 
that the water quality of the entire Renuka Lake is within 
the eutrophic to hypereutrophic range. Trophic status is 
particularly pronounced in certain areas of the extreme 
western, central, and eastern parts of the lake, primarily 
attributed to their proximity to hotels, temples, and bathing 
Ghats, where human activities and pollution reach maximum 

levels. Factors such as upwelling, agricultural runoff, weed 
growth, drainage influx, and siltation from surrounding 
drainage basins contribute significantly to the increasing 
Trophic State Index (TSI) in Renuka Lake. Conversely, the 
central portion of the lake, where TSI is the lowest, exhibits 
relative clarity and greater depth due to minimal siltation 
and reduced human activity. The analysis of satellite data 
over the past decade unequivocally indicates that Renuka 
Lake has been consistently in a eutrophic to hypereutrophic 
condition, confirming the deterioration in water quality, as 
corroborated by TSI from ground observations. The Secchi 
disc transparency test emerges as a quick, easy, and accurate 
method for determining the trophic state of the lake. Notably, 
rigging interpolation stands out as a superior technique for 
generating water quality maps from in-situ data compared 
to alternative approaches.

The current pH and dissolved oxygen (DO) levels in 
Renuka Lake suggest favorable water quality conditions 
for aquatic life. However, to establish a comprehensive 
database and unravel the intricate relationships between 
physical, chemical, and biological processes in the lake, 
ongoing extensive monitoring programs are imperative. 
These programs should be implemented as part of an 
integrated development strategy aimed at safeguarding 
the wetland ecosystem from siltation, eutrophication, 
floodwater influx, and preserving aquatic life. Furthermore, 
afforestation initiatives in the lake’s vicinity can effectively 
mitigate siltation and curb rapid soil erosion. Protective 
measures for the smallest Ramsar Wetland Ecosystem in 
the Shiwalik Range of the Lower Himalaya must include a 
complete prohibition on discarding household waste into the 
lake, regular cleaning of emergent and submerged aquatic 
weeds to reduce nutrient levels, and routine monitoring 
of water quality parameters to assess pollution. Thus, the 
consistent monitoring of water quality, both through in-situ 
observations and satellite data, is crucial for assessing and 
preserving the trophic status of the lake and safeguarding its 
Ramsar site wetland designation.

For an effective lake hydrological environment 
monitoring, the extensive utilization of continuous time-
series satellite data, coupled with field-observed water 
quality data, proves beneficial. Landsat-8 OLI data, with its 
spatial, spectral, and radiometric resolutions, can intricately 
retrieve water quality indicators such as SDT and TSI. 
Recognizing the constraints of Landsat-8 OLI’s 16-day 
revisit time and frequent cloud obscuration, incorporating 
other high-temporal-resolution satellite data sources like 
MODIS, Sentinel-2A, Rapid-Eye, and NOAA AVHRR can 
offer valuable insights into long-term trends in water quality 
metrics. The integration of field observations and remote 

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
mailto:sujaul@ukm.edu.my
mailto:sujaul@ukm.edu.my


2036 Sujit Kumar Jally et al.

Vol. 23, No. 4, 2024 • Nature Environment and Pollution Technology  This publication is licensed under a Creative 
Commons Attribution 4.0 International License

This publication is licensed under a Creative 
Commons Attribution 4.0 International License

sensing data becomes a valuable resource for limnologists 
and lake management authorities. Future research endeavors 
should delve into assessing the mechanisms essential for 
protecting Renuka Wetland from rapid eutrophication. 
Embracing readily accessible and upcoming satellite data, 
adhering to open access and public data policies, leveraging 
existing algorithms, and employing open-source data 
will undoubtedly enhance the efficacy of remote sensing 
applications in lake research.
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