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       ABSTRACT
The expansion of urbanization and the amplification of anthropic activities in the Rif region 
require the establishment of wells. However, the irrational exploitation of water and natural 
conditions have generated the rise of the water table and the increase in pollution. Thus, the 
assessment of water quality has emerged as a significant concern. This study’s goal is to 
assess the adequacy of groundwater quality in two aquifers in the vicinity of the Mediterranean 
Zone - Drouich Province and Oriental Region, Morocco, for drinking water needs by taking 62 
water samples of the Kert aquifer for 2019. The Water Quality Index (WQI) classifies water 
quality: as excellent, good, poor, very poor, etc. That is essential for conveying information 
about water quality to people and decision-makers in the affected area. The WQI in the 
Kert aquifer varies from 62.3 to 392.3. The calculation of the water quality index (WQI) of 
the Kert aquifer view is based that 45.16% of groundwater samples are of poor quality, 
making them acceptable for drinking. The study’s analysis is established with a geographic 
information system (GIS) setting. The index map provides decision-makers with a complete 
and interpretable picture for better water resource planning and management. SVM models 
are shown to account for 87.71% of the varying water quality score. Different statistical and 
intelligence models may make the index more predictable. These forecasts assist us in better 
managing the aquifer’s water quality.

INTRODUCTION

Public health issues involving the chemical contamination 
of groundwater must be addressed immediately. The 
availability of water for human use is a critical global and 
regional concern (Azizullah et al. 2011, El Yousfi et al. 
2022, Schweitzer & Noblet 2018, Vesali Naseh et al. 2018). 
Water Quality Indices (WQIs) are an easy-to-understand 
tool that managers and decision-makers can use to evaluate 

a specific water body’s quality and potential applications 
(Kumari & Sharma 2019, Rawat & Singh 2018). WQI is a 
mathematical technique for integrating detailed water quality 
data into a numerical score describing the general view of 
the water’s quality (Gueddari et al. 2022, Mukate et al. 2019, 
Ponsadailakshmi et al. 2018, Singh et al. 2019) as a whole. 
In essence, the WQI aims to offer a system for presenting a 
cumulative score and an expression numerically describing 
a certain level of water quality (Deshpande et al. 2014, 
Tziritis et al. 2014). Horton’s work led to the development 
of the first WQI in the US, which has been used in Europe 
since the 1970s, initially in the UK. Later, the United 
States National Sanitation Foundation refined this concept 
(Banda & Kumarasamy 2020, de Andrade Costa et al. 2020, 
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Kachroud et al. 2019). As a result, the WQI principle has 
been the subject of extensive effort since then, using concepts 
that have been slightly modified (Brilli et al. 2013, Eden & 
Ackermann 2001, Von Zur Gathen & Gerhard 2013).

Prior research in this field has concentrated on 
groundwater quality (the source of salinity, the aquifer’s 
geochemistry, and investigations of heavy metals). (Elgettafi 
et al. 2013, Hicham et al. 2021a, 2021b). This publication 
predicts the Water Quality Index in the unconfined Kert 
aquifer using a Support Vector Machine.

Water is required for the life of all organisms. As such, 
it is an irreplaceable resource (Butler 2017, Malekzadeh 
et al. 2019, Toolabi et al. 2021) We found that the WQI 
can be predicted using physical values and no sub-index 
computation of the input for physical and chemical 
parameters in this study.

MATERIALS AND METHODS

Study Area

North-eastern Morocco is home to the Kert Basin, which 

covers a space of around 250 square kilometers are shown 
in Fig. 1. The western Gareb chain forms its eastern 
boundary. The Kert basin’s most important river, the 
seasonal Temsamane, flows around the massive Temsamane 
metamorphic mountain, which surrounds the plain to the 
north and northwest. The river’s overall length is 90 km and 
its catchment area is 2710 sq. km (Zielhofer et al. 2008). 
According to some studies on the current regular fault system, 
Kert Basin was formed during the Messinian Paleocene. 
(Azdimousa 2007). Pump testing and electro-geophysical 
investigations were used to develop this model. The Kert plain 
is encircled by an open aquifer that flows through the Miocene 
Bluish Marls (bedrock aquifer). Numerous hydrogeological 
formations exist, and their stratification is visible in Fig. 2. 
Transgressed Miocene marls are overlain by an identical layer 
of limestone and conglomerate that serves as the aquifer’s 
bedrock. The only other formation in the region, we think, 
is the Miocene, which contains gypsum. This sequence is 
completed with villafranchian gravel, silt, and clay. Two 
Miocene vertical faults created the Kert basin. As a result, 
the northern and southern bounds of the plain were extended. 
These faults may connect the aquifer to the Jurassic unit below 

 
Fig. 1: The Kert basin’s placement.
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(Carlier 1973). With an annual rainfall of just 276.9 mm, the 
area is semi-arid. Temperatures range from 10°C to 25°C 
annually. The Moulouya Hydraulic Basin Agency pegs the 
average annual evapotranspiration as 291.6 mm.year-1.

Field Sampling

During the low water season of 2019, sixty wells and 
two springs are tested from the Kert groundwater. The 
groundwater samples are subjected to a physicochemical 
evaluation (Rodier et al. 2009), and a physico-chemical 
analytical procedure is used. Coolers were used to retain 
the models at 4oCelsius right away. The ISO 5665 standard 
is used to collect the samples. The pieces were kept cool 
(2 to 4°C) in labeled plastic bottles to examine chemical 
parameters. EC, pH, main elements (Cl-, Ca2+, Mg2+, K+, 
Na+, SO4

2-, HCO3
-, NO3

-, and PO4
3-) were investigated. 

Data Processing 

Physicochemical data is evaluated using Principal Compo-
nent Analysis-based multivariate statistical methodologies 
(PCA). The statistical method is often used in water research 
to investigate water mineralization and pooling and deter-
mine the relationship between WQI and salinity phenomena. 
The statistical analysis was carried out using the R program. 
A comparison is made between the measured factors and 
the quality of drinking water requirements set by the WHO. 
Thematic maps employing Geographic Information Systems 
are used to display the results (GIS).

The water quality index (WQI) was developed to 
quantify the influence of human and natural activities on 

groundwater chemistry. While assigning weights for the WQI 
computation, the relative relevance of the physicochemical 
parameters in determining the overall quality of water for 
drinking water applications is evaluated. Between one and 
five, the weight is given. TDS, pH, EC, SO4, nitrate, and 

 

 Fig. 2. a - The Kert Plain’s base map and b - Hydrogeological section of the kert aquifer system (Carlier 1973).

Table 1: Physicochemical parameters relative weight Parameters (WHO 
Edition 2011).

Chemical  
variables

WHO standards 
(Edition 2011)

Weight 
(wi)

Relative weight 
Wi = wi /Σn

i=1wi

pH (on the scale) 6.5-8.5 4 0.114

EC [mS.cm-1] 250 4 0.114

TDS [mg.L-1] 500 5 0.142

HCO3
- [mg.L-1] 500 3 0.086

Cl- [mg.L--1] 600 3 0.086

SO4
2- [mg.L-1] 400 4 0.114

NO3
- [mg.L-1] 50 5 0.142

Ca++ [mg.L-1] 200 2 0.057

Mg++ [mg.L-1] 150 1 0.029

Na+ [mg.L-1] 200 2 0.057

K+ [mg.L-1] 10 2 0.057

Table 2: WQI-based water quality rating ranges and kinds range water type 
(Bhargava 1983).

Range Type of waters

≥50 Excellent water

50-100 Good water

100-200 Poor water

200-300 Very poor water

≤300 Water that is unfit for consumption
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HCO3 have been assigned a maximum weight of 5, 4 for 
pH, EC, SO4

2-, 3 for HCO3
-, and two for Ca++, Na+, and K+ 

(Table 1). (Akhtar et al. 2021, Bhimanagouda et al. 2020, 
Gueddari et al. 2022, Karunanidhi et al. 2021, Selvam et 
al. 2014)). The comparative weight is calculated using the 
subsequent equation (eq.1).

 Wi = 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤/∑ 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
𝑛𝑛𝑛𝑛=1                                                                                                                             …(1)             

Where:

Wi denotes the weight relative to another.

wi denotes the parameter’s weight.

The argument count is n.

The level for evaluating the quality of each parameter is 
determined by dividing each water sample’s concentration 
by the applicable standard  (WHO Edition 2011) and multi-
plying the results by 100 (eq.2).

 𝑄𝑄𝑄𝑄𝑖𝑖𝑖𝑖 = �𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐
� ×100    …(2)                                                      

Where,

Qi denotes the standard of quality.

ci denotes every chemical parameter’s concentration in

The weight of each sample is determined, and the concen-
tration is given in milligrams per liter. si is the recommended 
limit for every chemical parameter in milligrams per liter by 
the World Health Organization (WHO Edition 2011). Begin 
the last phase of WQI calculation by computing the SI for 
each parameter (Table.2). The water quality index is calcu-
lated by adding the SI values for each sample.  (Abbasnia et 
al. 2019, Mukate et al. 2019) (eq.3 and 4).

 Sli = Wi × qi  …(3)                       

 WQI = ΣSli   …(4)

Where

Sli is the ith parameter’s sub-index.

qi is the score assigned to the ith parameter depending 
on its concentration.

The number n denotes the number of parameters.

Physical and Chemical Analysis

Because the parameters vary after sampling, and cannot be 
identified qualitatively, we took measurements of T (°C) and 
dissolved oxygen in situ, as well as pH, Cond (S.cm-1), and 
hydrogen potential (pH) (O2d). For these tests, we utilized 
a MULTI 350I multi-parameter meter that is easily portable.

Methods for analyzing various other variables were used in 
a laboratory, as per recommendations from Rodier et al. (2009):

 •  To identify and quantify (K+, Na+), we employed Flame 

Atomic Absorption Spectrophotometry (Varian Model 
475-AA).

 •  According to the ISO17294-2:2016 standard, the 
measurements are made using spectrophotometry and 
colorimetric dose (SO4

2-, NO3
-, PO4

3-).

 • Complexometric measurements are used for calcium 
and magnesium. To measure the concentration of main 
anions, we used them as a technique.

 •  Chloride precipitation and bicarbonate titrimetry with 
0.01 N HCl are two methods to determine precipitation. 
It is common practice to measure chemical levels in 
mg.L-1 units.

Support Vector Machine (SVM)

Identifying the root causes of data is well-suited to the use 
of SVM-based supervised machine learning models. The 
statistical learning theory and the notion of structural risk 
reduction underlie these strategies (Bennett & Demiriz 1999, 
Evgeniou et al. 2002). The kernel approach in regression 
transforms non-linear correlations between inputs and 
outputs into a higher-dimensional regression analysis. (Üstün 
et al. 2007, Xu et al. 2006). D = x I,y I i = 1: n, where x is 
the contribution vector, y is the output variable, and n is the 
number of observations.

The SVR model aims to find the best function f defined 
(Kavousi-Fard & Kavousi-Fard 2013, Mohammadi & Me-
hdizadeh 2020) (eq.5):

 𝑓𝑓𝑓𝑓(𝑥𝑥𝑥𝑥) = 𝑤𝑤𝑤𝑤𝑇𝑇𝑇𝑇φ(𝑥𝑥𝑥𝑥) + 𝑏𝑏𝑏𝑏  …(5)

Where a is a nonlinear function that translates the data 
received into high dimensional space, w and b represent the 
weights and the bias that are determined by minimizing the 
regularized risk function (eq.6):

 𝑅𝑅𝑅𝑅 = 1
2
𝑤𝑤𝑤𝑤𝑇𝑇𝑇𝑇𝑤𝑤𝑤𝑤 + 𝐶𝐶𝐶𝐶 1

𝑛𝑛𝑛𝑛
∑ 𝐿𝐿𝐿𝐿𝜀𝜀𝜀𝜀(𝑔𝑔𝑔𝑔(𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖),𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖)𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖     …(6)

Where Le   is the e  – I insensitive loss function; 

𝐶𝐶𝐶𝐶 1
𝑛𝑛𝑛𝑛
∑ 𝐿𝐿𝐿𝐿𝜀𝜀𝜀𝜀(𝑔𝑔𝑔𝑔(𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖),𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖)𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖    is the empirical error and C is a 

positive Trade-off parameter between the observed error’s 
magnitude and the model’s flatness.

When attempting to forecast river water quality using 
an ungauged catchment in a dual scenario, this study turned 
to RBF (Model-Based Support Vector Machine Model for 
Predicting Water Quality) (eq.7).

 𝐾𝐾𝐾𝐾�𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖, 𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗� = exp (−
∥ 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗 ∥2

2𝜎𝜎𝜎𝜎2
)  …(7)

Where ||x
i
 – x

j
||2 is the squared Euclidean distance 

between the two input vectors  and, and  is the band-
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width parameter of the RBF function (Sun & Fox  
2014).

RESULTS AND DISCUSSIONS

Water Quality Index (WQI)

An assessment of water quality and the sustainability of 
drinking water can only be made using the Water Quality 
Index (WQI) (Bhimanagouda et al. 2020, Nong et al. 2020, 

Ponsadailakshmi et al.  2018). The Water Quality Index 
(WQI) is described as a technique of assessment that delivers 
the final impact of each water quality indicator (Adimalla 
2019, Tripathi & Singal 2019).With an average of 110.16 
28.55, 60 wells and two springs are evaluated for the Water 
Quality Index (WQI). Sixty percent of the water points have 
a WQI of more than 100, which indicates poor water quality. 
Because 88.89 percent of these boreholes had Nitrate levels 
over 50 mg.L-1, it seems that high levels of nitrates influence 

Table 3: Individual water quality index (WQI) categorization.

Wells WQI Water quality classification type Wells WQI Water quality classification type

w1 219.4 Very poor water w34 84.1 Good water

w2 334.98 Water that is unfit for consumption w35 139.6 Poor water

w3 311.02 Water that is unfit for consumption w36 190.7 Poor water

w4 264.48 Very poor water w37 201.5 Very poor water

w5 138.29 Poor water w38 175.1 Poor water

w6 202.1 Very poor water w39 206.3 Very poor water

w7 197.5 Poor water w40 216.2 Very poor water

w8 96 Good water w41 224.1 Very poor water

w9 138.4 Poor water w42 322.5 Water that is unfit for consumption

w10 282.8 Very poor water w43 392.3 Water that is unfit for consumption

w11 179.7 Poor water w44 301.1 Water that is unfit for consumption

w12 296.5 Very poor water w45 320.1 Water that is unfit for consumption

w13 234.7 Very poor water w46 186.7 Poor water

w14 228.6 Very poor water w47 126.1 Poor water

w15 128.4 Poor water w48 169.3 Poor water

w16 273.5 Very poor water w49 74.6 Good water

w17 227.6 Very poor water w50 138 Poor water

w18 197.7 Poor water w51 89.6 Good water

w19 223.6 Very poor water w52 74.9 Good water

w20 260.1 Very poor water w53 99.5 Good water

w21 318.1 Water that is unfit for consumption w54 110.2 Poor water

w22 245.2 Very poor water w55 98.2 Good water

w23 222.6 Very poor water w56 92 Good water

w24 179.3 Poor water w57 96 Good water

w25 213.5 Very poor water w58 152.5 Poor water

w26 116.6 Poor water w59 158.8 Poor water

w27 109.3 Poor water w60 185.3 Poor water

w28 139.3 Poor water S1 95 Good water

w29 183.4 Poor water S2 69.8 Good water

w30 153.2 Poor water

w31 128.3 Poor water

w32 163.2 Poor water

w33 62.3 Good water
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the WQI and the deterioration of water quality is shown in 
(Table.3). Fig. 3 illustrates how an examination of WQI 
and other metrics demonstrates that natural processes are 
crucial to the deteriorating water quality of the Kert Aquifer. 
Gypsum in rock formations may cause this phenomenon 
since rock salt dissolves readily in water (Gueddari et al. 
2022, Liu et al. 2020, Lu et al. 2015, Zaier et al. 2021)). The 
elevated concentrations of EC, chloride, salt, and calcium 
demonstrate unequivocally that rock-water interactions 
are the dominant driver of water quality degradation in the 

 
     Fig. 3: Water quality classification ranges.

 
 Fig. 4: Plot of prediction versus SVM-Model test data.

Table 4: Table predictive performances of the SVM model.

R² RMSE

Training 0.8771 25.6819

Testing 0.8631 25.7497

studied region (Kawo & Karuppannan 2018, Mukate et al. 
2019, Vaiphei et al. 2020).

All simulations were written with Python 3.8 using the 
sci-kit-learn library. Table 4 depicts the achieved results in 
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both the training and testing stages. As this table indicates, 
the root means square error rose only by 0.26%, while 
R² decreased slightly by 1.6% during the testing phase. 
These results showed that the SVM model is stable (Table 4).  
Fig. 4 illustrates the SVM model’s regression plots between 
the measured and predicted WQI values. As demonstrated by 
this figure, the SVM model showed a reasonable correlation 
between observed and estimated values with values of  
R² = 0.8771 and R² = 0.8631 in both the training 
and testing stages, correspondingly. These results 
reveal the SVM approach’s resilience in predicting  
WQI.

Statistical Studies

Principal Component Analysis (PCA) is used to analyze the 
physicochemical data. A table of 15 variables (Ca2+, Mg2+, 
Na+, K+, HCO3

-, SO4
2-, Cl-, NO3

-, PO4
2- Electrical conductivity 

(Cond), PH, O2d, and T) and 62 persons is used (wells and 
springs) (Table 5). The correlation matrix (Table 5) for the 
various parameters investigated revealed a strong link between 
Na+, SO4

2-, Cl-, and electrical conductivity. The correlation 
matrix, a square matrix characterized by a correlation coeffi-
cient, may determine the relationship between two variables. 
All water samples examined were put into a correlation matrix 
(Table 5).

Table 5: Correlation between variables and factors.

pH CE TDS Cl- Mg2+ Ca2+ K+ NO3
- SO4

2- HCO3
- Na+ WQI

pH 1.00

CE -0.61 1.00

TDS -0.55 0.89 1.00

Cl- -0.56 0.95 0.82 1.00

Mg2+ -0.28 0.58 0.64 0.61 1.00

Ca2+ -0.37 0.51 0.72 0.37 0.45 1.00

K+ -0.19 0.14 0.24 0.05 0.17 0.25 1.00

NO3
- 0.11 -0.20 -0.15 -0.19 0.03 -0.14 -0.12 1.00

SO4
2- -0.31 0.44 0.78 0.29 0.45 0.82 0.38 -0.12 1.00

HCO3
- 0.00 0.23 0.28 0.11 0.03 0.07 -0.14 0.14 0.18 1.00

Na+ -0.58 0.89 0.92 0.86 0.40 0.47 0.13 -0.18 0.57 0.31 1.00

WQI -0.58 0.86 0.93 0.80 0.57 0.56 0.19 -0.14 0.68 0.31 0.89 1.00

  

 

 

 

Fig. 5: Main components analysis circle.



2022 Hicham Gueddari et al.

Vol. 21, No. 5 (Suppl), 2022 • Nature Environment and Pollution Technology  

After  examining the correlat ion matr ix,  we  
discovered the following intriguing correlations between 
the variables:

 • TDS (0.93) has the strongest correlation with the WQI, 
whereas Electric conductivity (0.86), Cl- (0.8), Na+ 
(0.89), SO4

2-(0.68), and Mg2+ have modest correlations 
(0.57). CE and Cl-(0.95) and CE and Na+ have strong 
relationships (0.89). Only a little correlation exists 
between Calcium and WQI (0.56) and SO4

2-(0.86), 
showing that the two are intertwined and affect the 
Kert alluvial aquifer’s groundwater quality. The 
number of essential factors was calculated using the 
Kaiser criteria ( 1958). Based on these criteria, aquifer 
hydrogeochemistry variation can only be explained by 
components with eigenvalues larger than or equal to 
one.

A total of 64.83 percent of the variation may be attributed 
to the four primary kept components as shown in (Table 5). 
Na+, Cl-, WQI, CE and TDS positively influence Principal 
Component 1, accounting for 52.36 percent of the overall 
variance. Evaporitic rocks are responsible for this problem, 
as are residential and agricultural pollutants are shown in Fig. 
5. Ca2+, SO4

2-, and K+ contribute to Principal Component 2, 
accounting for 11.81 percent of the variation. The salinity 
of the water is consequently the determining element here. 
It results from surface salts being dissolved in water and 
then remineralized. Each of the four variables (components) 
represents one of the primary processes that explain how to 
understand how the Kert aquifer acquired and evolved its 
chemist; it is necessary to look at four variables (compo-
nents): water-rock interaction, agricultural pollution, and 
the aquifer itself. As a result of these interactions between 
water and rock and pollution from home and industrial 
agriculture, the four variables (or components) reflect the 
primary processes that explain how the chemist of the Kert 
aquifer came to be. There are three families of water quality 
founded on the projection of persons shown in Fig. 5, the 
first and second of which are situated in the south and eastern 
regions of the research area, respectively. The third family 
characterizes Salinity-polluted environments. 

CONCLUSIONS                                                                                                                     

Aquifer lithology and recharge areas, which favor geolog-
ical dissolution, are connected to groundwater chemistry, 
associated with the Triassic marl-sulfate formations and 
the Quaternary evaporate formations. On the other hand, 
the Kert aquifer’s groundwater is of low quality. According 
to a principal component analysis (PCA) chemical factors, 
such as sodium, calcium, magnesium, sulfates, and chlorides, 
have the most significant effect on the quality of Kert’s 

quaternary water table. The Water Quality Index (WQI) 
reveals that 79% of the drillings had WQI values over 100. 
As salt levels rise, the Oust of Kert is particularly suscep-
tible since it contains more than the WHO’s recommended 
amount of salinity. Soil treatment is needed in light of this 
condition and conservative water management measures, 
such as establishing a strict residential discharge monitoring  
system.
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