
Effects of TiO2/Bentonite on the Pyrolysis Process of Oily Sludge 

Feifei Wang*(**), Huan Zhang***, Mingming Du*, Jinling Li*, Penghui Yang*, Tao Yu*, Yijun Wang****  
and Chengtun Qu*(**)†
*College of Chemistry and Chemical Engineering, Xi’an Shiyou University, Xi’an 710065, P. R. China
**State Key Laboratory of Petrochemical Pollution Control and Treatment, Beijing 102206, P. R.China
***School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R.China
****Karamay City Sanda Testing and Analysis Co., Ltd, 834000, P.R.China 
†Corresponding author: Chengtun Qu; xianquct@163.comm

ABSTRACT

Oil sludge is one of the major industrial solid wastes from petroleum production and refining. 
Implementing the harmless and resource treatment of oily sludge is an urgent problem to be solved. 
In this paper, TiO2/bentonite was prepared by sol-gel method, which was characterized by scanning 
electron microscope (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD), X-ray 
photoelectron spectroscopy (XPS) and infrared spectroscopy (FT-IR), and then used in the pyrolysis 
process of oily sludge. The addition of TiO2/bentonite give the best quality of pyrolysis oil; maximum oil 
recovery was achieved when setting the pyrolysis condition at 420°C for final pyrolysis temperature, 
3 h for reaction time, 10°C/min for heating rate, 100 mL/min for nitrogen flow rate and 1% for catalyst 
dosage. Compared with the non-catalyst, oil recovery rate can be increased from 76.06% to 84.16%, 
the oil content of the residue decreased from 2.23% to 1.36%. The pyrolysis recovery oil was analysed 
by GC-MC, and the fractions of pyrolysis oil C6-C15 were increased by 27.84%. This shows that the 
addition of TiO2/bentonite decreased the carbon residue, increased oil recovery and improved product 
quality.   

INTRODUCTION

Oil sludge is one of the major industrial solid wastes from 
petroleum production and refining process (Mrayyan & 
Battikhi 2005, Agar et al. 2018 ), which is increasing quickly 
(Zhao et al. 2019, Wang et al. 2019) with the rapid develop-
ment of economy, and it have been listed to the Directory 
of National Hazardous Waste as one of the most hazardous 
solid wastes. If oily sludge is discharged into the environment 
directly without reasonable treatment, it is not only harmful 
to the surrounding environment, animal and plant health, but 
also is a waste of resources because the containing of some 
content oil (Gong et al. 2018). Many countries are paying 
more attention to sewage sludge effective treatment and 
recycling, while the low-temperature pyrolysis of sludge is 
a new sludge treatment technology which developed in the 
recent years (Folgueras et al. 2013, Botella et al. 2015). The 
pyrolysis of the sludge is an emerging process technology, 
which is a promising alternative for sludge treatment in 
terms of treatment efficiency pollution reduction (Wang et 
al. 2018, Wang et al. 2017, Tang et al. 2018) and energy and 
resource recovery. But the quality of the oil obtained from 
the pyrolysis of sewage sludge cannot be used directly, the 
upgrading of sludge oil is indispensable.

To improve the quality of oil and enhance oil recovery, 
a series of studies on the addition of catalysts or additives 
during the pyrolysis of sludge were carried out. The 
addition of catalyst in the pyrolysis process of oily sludge 
can reduce the pyrolysis temperature, shorten the reaction 
time, improve the pyrolysis efficiency and decrease the 
amount of solid residue (Yang et al. 2018, Lin et al. 2017, 
Lin et al. 2019, Liu et al. 2015). Many scholars (Wang et 
al. 2015, Wang et al. 2008, Shie et al. 2004) found that the 
addition of catalyst can improve the yield and quality of 
oil products from oil sludge during the pyrolysis process. 
In recent years, an intense effort has been focused on the 
preparation of metal-oxide nanocrystals owing to their 
markedly different physical and chemical properties with 
respect to bulk materials. Particularly, titanium dioxide has 
been studied extensively as a photocatalyst to deal with 
environmental pollution, water purification, wastewater 
treatment, hazardous waste control, and air purification, due 
to its good characteristics of chemical stability, endurance, 
thin-film transparency and lower production costs. However, 
there are certain shortcomings associated with conventional 
TiO2 powders catalysts, including TiO2 is difficult to recover 
in the catalytic process, easy to lose, easy to agglomerate, and 
its application is limited. So the TiO2 exhibits a poor catalytic 
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activity to non-polar organic compounds, resulting in limited 
catalytic efficiency. To enhance the catalytic activity onto 
the catalyst surface, various porous solid supports such as 
zeolite, silica and clay are utilized to support TiO2. For this 
reason, TiO2 can be supported on some inexpensive and 
readily available catalyst supports with good adsorption and 
large specific surface area to make the supported catalysts. 
On the one hand, TiO2 can be immobilized, and on the other 
hand, the layered molecular structure of bentonite can be 
modified to increase the contact area between the catalyst 
and the oily sludge, and play a role of synergistic catalysis, 
so as to improve the catalytic performance. Xiao et al. (2012) 
studied the pyrolysis characteristics and pyrolysis kinetics of 
paper sludge before and after the addition of MnO2, Al2O3, 
MgO, Fe2O3, CuO or CaO by thermograin-analysis. The 
results showed that the influence of these metal oxides on 
the pyrolysis of sludge was mainly in the middle and high 
temperature stage. Shao et al. (2010) studied the catalytic 
effect of Fe2O3, ZnO, Al2O3, CaO and TiO2 on sludge 
pyrolysis, and found that these metal oxides could promote 
the decomposition of volatilization in sludge at the initial 
stage of the reaction. Since the bentonite has a significant 
effect on the pyrolysis of the low temperature zone during 
the pyrolysis of the oily sludge, the catalytic effect on the 
pyrolysis of the medium and high temperature zone is poor. 
Therefore, the bentonite is combined with the TiO2 that plays 
a catalytic role in the middle and high temperature areas to 
play a synergistic catalytic role. The main objectives of this 
study were: (1) To evaluate the influence of TiO2/bentonite on 
the quality of oil products; (2) To evaluate the effect of TiO2/
bentonite on the oil recovery rate of the pyrolysis process.

MATERIALS AND METHODS 

Materials

The oily sludge sample used in this study was derived from 
the bottom sludge of an oil-separating tank in the Shanbei 
oil field Branch Company, China. The oily sludge sample 
appears black and possesses poor settling ability. The com-
position (including oil content and water content of sludge) 
of the oily sludge has been analysed and listed in Table 
1. The water content was determined by ASTM-D95-13 
(Lin et al. 2019) and oil content of sludge was determined 
by Soxhlet extraction using petroleum ether as a solvent. 
Tetrabutyl titanate, anhydrous ethanol, distilled water, acetic 
acid, bentonite and petroleum ether were all analytically 
pure reagents. The experimental water used was deionized 
water. All chemicals have been used as received without 
further purification. 

Preparation of Catalysts 

In this study, the supported catalyst was prepared by Sol-
Gel method based on bentonite as matrix material (Yao et 
al. 2012, Cao et al. 2010, Li et al. 2007, Chen et al. 2009). 
The preparation process is shown in Fig. 1. The precursor 
was tetrabutyl titanate (Ti(OC4H9)4, 97%). Ti(OC4H9)4 was 
dissolved in anhydrous ethanol, and then mixed with acetic 
acid and deionized water under stirring. To avoid rapid 
precipitation during polycondensation and formation of 
unstable colloidal sols, the hydrolysing water was homoge-
neously released by the esterification of ethanol and acetic 
acid (Zhao et al. 2009). The clear solution was stabilized 
by stirring at ambient temperature for 1 h, then placed and 

Table 1: Chemical characteristics of oily sludge.

Element composition (%) Oil content/% Water content/% Calorific value (kJ/kg)

C(%) N(%) H(%) S(%) C/N C/H

21.63 1.45 4.25 2.36 14.949 5.086 18.67 11.20 12813.69
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150℃ , and then calcined to burn off hydrocarbons. The sample was crushed into powder in a mortar at last. 

Liu et al. (2009) studied the effect of calcination temperature on the structure of titanium dioxide photocatalyst. 

When the calcination temperature is 500-550℃ , the development of TiO2 crystal is gradually complete, and 
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is selected to calcine at 500℃  for 3 hours. The white powder obtained is TiO2/bentonite, which is recorded as 
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Ka radiation. X-ray photoelectron spectroscopy (XPS) measurements were performed using a Thermon 

ESCAlab 250 spectrometer with Al Ka radiation as an excitation source. In order to analyze the surface 

chemical state of the obtained samples, the publicly available XPSPEAK v4.1 software package was used to 

perform a curve fitting of the raw data corresponding to the Ti2p high-resolution spectra. Fourier transform 

infrared (FTIR) spectra were obtained in a Bruker Vertex 70 spectrometer, with KBr pellets and a resolution 
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aged for 24 h. Subsequently, the transparent sol was dried 
at 150°C, and then calcined to burn off hydrocarbons. The 
sample was crushed into powder in a mortar at last. Liu et 
al. (2009) studied the effect of calcination temperature on 
the structure of titanium dioxide photocatalyst. When the 
calcination temperature is 500-550°C, the development of 
TiO2 crystal is gradually complete, and the lattice structure 
tends to be perfect, which is an anatase crystal phase with a 
catalytic effect. Therefore, it is selected to calcine at 500°C 
for 3 hours. The white powder obtained is TiO2/bentonite, 
which is recorded as TiO2/bentonite (1) (nSi:nTi = 8:1). TiO2/
bentonite (2) (nSi:nTi = 4:1) and TiO2/bentonite (3) (nSi:nTi 
= 1:1) was synthesized by changing the ratio of butyl titanate 
to bentonite in the same way.

Characterization of Catalysts

The surface morphology was investigated by scanning elec-
tron microscopy (SEM) using a JEOL JSM 6400 electronic 
microscope equipped with an energy-dispersive X-ray (EDX) 
detector (eXL10 from Link Analytical). X-ray diffraction 
(XRD) patterns were recorded by an Empyrean X-ray 
diffractometer with Cu Ka radiation. X-ray photoelectron 
spectroscopy (XPS) measurements were performed using 
a Thermon ESCAlab 250 spectrometer with Al Ka radia-
tion as an excitation source. In order to analyze the surface 
chemical state of the obtained samples, the publicly availa-
ble XPSPEAK v4.1 software package was used to perform 
a curve fitting of the raw data corresponding to the Ti2p 
high-resolution spectra. Fourier transform infrared (FTIR) 
spectra were obtained in a Bruker Vertex 70 spectrometer, 
with KBr pellets and a resolution of 2 cm-1. Nitrogen ad-
sorption isotherms were measured using a Micromeritics 
ASAP 2020 analyser. Samples were degassed at 300°C and 
5×10-3 torr vacuum. The surface area was obtained by the 
BET method, and t-plot external area, micropore area, and 
micropore volume were also calculated.

Thermogravimetric Analysis

The thermogravimetric analysis (TG/DTG) was performed 
with a DSC/DTA-TG STA449F3 (Germany) thermogravi-
metric analyser. The initial mass of the samples was kept 
between 5 and 10 mg to avoid any possible effect on mass and 
heat transfer during the decomposition process. The samples 
were heated from 25 to 900°C at a heating rate of 10°C/min 
for solving the compensation effect under a nitrogen atmos-
phere with a flow rate of 20 mL min-1 to investigate the effect 
of adding different catalysts on pyrolysis.

Catalytic Cracking Tests 

Experimental method for pyrolysis of oily sludge: the cata-
lyst was mixed with oily sludge in a certain proportion and 

then placed in a pyrolysis furnace for pyrolysis. The perfor-
mance of the catalyst was studied according to the analysis 
of pyrolysis products and the recovery rate of pyrolysis oil. 

 Products Analysis

The study examined the liquid products and solid products 
obtained by catalytic pyrolysis. The analysis of liquid phase 
pyrolysis products: composition of the liquid phase of pyrol-
ysis products was explored by GC–MS (Yang et al. 2014) 
and four components of pyrolysis liquid phase products were 
determined by NB/SH/T0509-2010 oil bitumen four-compo-
nent determination method (Zhang et al. 2009). The analysis 
of pyrolysis solid products: elemental analysis, oil content 
and calorific value of pyrolysis residue.

RESULTS AND DISCUSSION

Catalysts Characterization

Morphological feature: The SEM images are typical of the 
catalyst materials synthesized during this study. The SEM 
analysis of bentonite, TiO2/bentonite(1), TiO2/bentonite(2) 
and TiO2/bentonite(3) are shown in Fig. 2. The surface of 
bentonite (a) was tight and the porosity was small, while the 
surfaces of TiO2/bentonite(1) (b) was loose with more pores, 
the surface of TiO2/bentonite(2) (c) was loose with more 
pores and small granules, the surface of TiO2/bentonite(3) 
(d) was tight with small granules. The reason for this phe-
nomenon is that the bentonite after loading titanium dioxide 
changes its morphology, increases the porosity and increases 
the specific surface area. 

The EDS analysis of bentonite, TiO2/bentonite(1),  
TiO2/bentonite(2) and TiO2/bentonite(3) are shown in Fig. 
3. It can be seen that the content of Ti appeared compared  
with bentonite, which indicates that Ti was loaded onto 
bentonite. In addition, titanium content of TiO2/bentonite(2) 
is greater than that of TiO2/bentonite(1) and titanium content 
of TiO2/bentonite(3) is greater than that of TiO2/bentonite(2). 
From Fig. 3, the bentonite contains other elements,  
such as Al, Si and so on. The presence of these elements can 
promote the pyrolysis of sludge, thus actively promoting 
the research and development of pyrolysis catalysts for oily 
sludge.

Infrared Spectral Analysis

 It also can be seen the O-H stretching vibration of adsorbed 
water in the interlayer of montmorillonite structure nearby 
3439 cm-1 (Zhu et al. 2012). It had stretching vibration 
band of O-H near 1642 cm-1, and the peak near 1035 cm-1 
attributed to the asymmetry bending stretching of Si-O-Si. 
The bending vibration absorption peak of Si-O-Al near 519 
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Fig. 3: EDS analysis of bentonite, TiO2/bentonite(1), TiO2/bentonite(2) and TiO2/bentonite(3).

cm-1, the peak near 1407 cm-1 is attributable to the bending 
stretching of Si-O-Si. The peak near 1035 cm-1 is attributed 
to the asymmetry bending stretching of Si-O-Si. It can be 
seen that TiO2/bentonite(1) composite (Fig. 4b ), TiO2/
bentonite(2) composite (Fig. 4c ) and TiO2/bentonite(3) (Fig. 
4d ) the peak near 600~900 cm-1 has obvious absorption 
peak. This is the absorption peak of Ti-O bond of TiO2 (Liu 
et al. 2011). The results revealed that TiO2 was inserted into 
bentonite’s layers.

X-ray Diffraction Pattern Characteristics

XRD patterns of the bentonite, TiO2/bentonite(1), TiO2/
bentonite(2) and TiO2/bentonite(3) were obtained as shown 
in Fig. 5. The anatase phase of the corresponding diffraction 
peaks appeared at 2θ = 25.2°, 37.8°, 48.1°, and 55.2° in 
both the TiO2/bentonite(1), TiO2/bentonite(2) and TiO2/
bentonite(3) samples (Yu et al. 2017). The d (001) plane 
diffraction peaks of TiO2/bentonite(1), TiO2/bentonite(2) and 
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TiO2/bentonite(3), i.e. the position and intensity of the first 
peak have changed obviously. The intensity of the diffraction 
peak is weaker than that of bentonite. At the same time, 
compared with the bentonite, the d(001) diffraction angles of 
TiO2/bentonite(1), TiO2/bentonite(2) and TiO2/bentonite(3) 
increased. It can be seen from the Bragg equation  nl = 
2dsinq that the layer spacing d (001) of catalyst is smaller 
than that of bentonite (Yang 2012). This phenomenon is 
caused by the replacement of calcium hydrate between 
bentonite layers by titanium ions. The results revealed that 
TiO2 were inserted into bentonite’s layers.

Specific Surface Area and Aperture Determination

The specific surface area is one of the important parameters 
in catalysts. This characteristic must be taken into account 
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especially in the case of supported catalysts (Cecílio et al. 
2004, Yahya & Ngadi 2016). The N2 adsorption/desorption 
isotherms for the TiO2/bentonite(1), TiO2/bentonite(2) and 
TiO2/bentonite(3) are shown in Fig. 6(a). It should, however, 
be noted that in all the isotherms hysteresis is present in 
the low relative pressure range at p/po > 0.4, due to the 
phenomenon of capillary condensation in the adsorption 
process, the adsorption isotherm and the desorption 
isotherm do not coincide, resulting in a hysteresis lag, and 
the desorption isotherm is above the adsorption isotherm, 
resulting in a retention ring; and also well-developed 
hysteresis loops which testify to the development of the 
mesopore structure. It can be seen from Table 2 that the 
specific surface area of the bentonite increased after loading, 
the specific surface area increased from 47.69 m2/g to 67.76 
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Table 2: Mesopore surface area and pore volume results of catalysts. 

 Smes (m2/g) Vmes (cm3/g) BJH average aperture (Å) 

bentonite 47.69 0.13 125 

TiO2/bentonite (1)  50.01 0.14 115.78 

TiO2/bentonite (2)   67.76 0.18 95.60 

TiO2/bentonite (3)   55.17 0.16 110.14 
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m2/g, and the specific surface area of TiO2/bentonite(2) was 
larger than that of TiO2/bentonite (1), TiO2/bentonite(2) and 
TiO2/bentonite(3). What is more, TiO2/modified residue has 
higher Vmes (0.18 cm3/g) and Smes (67.76 m2/g) according to 
Table 2, this is the reason why TiO2/bentonite(2) possesses 
superior catalytic activity towards other kinds of catalysts. 
The Vmes and Smes of catalysts prepared are also consistent 
with their catalytic activity. Because the surface morphology 
of bentonite changes greatly after loading, from a smooth 
and compact structure to an increase in porosity and a loose 
layer structure, the specific surface area increases. At the 
same time, the bentonite support could disperse the catalyst, 
increase the surface-active area of the catalyst. The increase 
of specific surface area will increase the contact area between 
the catalyst and oily sludge, thus improving its catalytic 
performance.

Analysis of X-ray Photoelectron Spectroscopy (XPS)

XPS analysis was carried out to investigate the surface/inter-
face chemical states of the samples. In this paper, the valence 

of titanium in TiO2/bentonite supported catalyst is judged by 
XPS analysis. Full spectra of X-ray photoelectron spectros-
copy of (a) TiO2/bentonite(2) is shown in Fig. 7. Besides, 
a Ti2p peak located at 458.9 eV is observed in Fig. 7. This 
result provides further evidence that TiO2 was successfully 
coated on the residue surface. The high-resolution XPS 
spectra of the Ti2p region is shown in Fig. 7(b). The peaks 
located at 458.9 eV and 464.9 eV correspond to the Ti2p3/2 
and Ti2p1/2 binding energy regions, respectively (An et al. 
2018, Wu et al. 2013). The results show that titanium exists 
in the catalyst with Ti4+, and titanium exists in the form of 
TiO2 in the composite catalyst.

Effect of Catalyst on Pyrolysis Performance of Oily 
Sludge

Effect of catalyst species on pyrolysis treatment: When 
the pyrolysis time was 4 h, the pyrolysis temperature was 
450°C, the heating rate was 10°C/min, the nitrogen flow rate 
was 100 mL/min. Pyrolysis experiments were carried out 
with the addition of 1% of the two catalysts. Experimental 
results are given in Table 3.

It can be seen from Table 3 that the oil recovery rate of 
the bentonite and loaded bentonite is higher than that without 
the catalyst. And the catalytic effect of TiO2/bentonite(2) is 
better than that of TiO2/bentonite(1) and TiO2/bentonite(1). 
Because the specific surface area of TiO2/bentonite(2) was 
larger than that of TiO2/bentonite(1) and TiO2/bentonite(3), 
its catalytic effect is better. The prepared supported catalyst 

Table 2: Mesopore surface area and pore volume results of catalysts.

Smes 
(m2/g)

Vmes 
(cm3/g)

BJH average 
aperture (Å)

Bentonite 47.69 0.13 125

TiO2/bentonite (1) 50.01 0.14 115.78

TiO2/bentonite (2)  67.76 0.18 95.60

TiO2/bentonite (3)  55.17 0.16 110.14
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XPS analysis was carried out to investigate the surface/interface chemical states of the samples. In this 
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Table 3: Effect of catalyst species on the recovery of pyrolysis oil.

Catalyst species Non- catalyst Bentonite TiO2/bentonite(1) TiO2/bentonite(2) TiO2/bentonite(3)

Oily sludge quantity (g) 20.07 20.04 20.03 20.05 20.07

Oil recovery quantity (g) 2.85 2.94 3.08 3.15 3.10

Oil recovery rate (%) 76.06 78.61 82.35 84.16 82.73
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(TiO2/bentonite) can increase the number of the active sites 
of catalyst and enhance the catalytic activity. The specific 
surface area of catalyst increases, which increases the contact 
area between the catalyst and oily sludge and promotes the 
pyrolysis of oily sludge. This is consistent with the mesopore 
surface area and pore volume results of catalysts. 

Thermogravimetric Analysis 

To detect the catalytic effect of the catalyst on the pyrolysis 
of oily sludge, the catalyst was added to the oily sludge 
in a certain proportion for thermal weight analysis. 
Thermogravimetric analysis has been an interesting 
and useful analytical technique for the characterization 
of different organic products such as pitches, sewage 
sludges and other waste materials (Méndez et al. 2005). 
Thermogravimetric analysis is an important method to study 
the characteristics of sludge weight loss, which is of great 
significance to explore the reasonable reaction mechanism 
and kinetic parameters. The thermogravimetric data (TG) 
curves and first derivative data curves (DTG) of raw sludge 
and TiO2/bentonite(2) at 10°C/min are shown in Fig. 8. As 
illustrated in Fig. 8(b), three peaks were identified in the DTG 
curves, leading to the partition of these thermogravimetric 
curves. The corresponding DTG curves were derived from 
the first derivative of the TG curves. It can be found that 
three peaks appeared in the DTG curve of oily sludge, the 
temperature ranges of which were region I(25-150°C), region 
II(150-450°C), region III(450-700°C), respectively. The 
weight loss of oily sludge in the first region was attributed 
to the evaporation of adsorbed water from the surface of 
the sludge particles, while the decomposition of sludge 
components was responsible for the weight loss in the other 

two regions (Tang et al. 2018, Hayhurst 2013). More than 
70% of the overall weight loss, as depicted in Fig. 8(a) 
occurred when the temperature was heated up from 25°C to 
700°C, which is generally the highest temperature applied for 
sludge pyrolysis in practice (Tang et al. 2017). It can be seen 
from the Fig. 8(a), that the total weightlessness is affected by 
the added catalyst, and the addition of the catalyst increases 
the weightlessness. When the temperature was increased 
further, the weight loss of TiO2/bentonite(2)-blended sludge 
was appreciably larger when compared to that of the oily 
sludge and TiO2/bentonite(1)-blended sludge. The results 
show that the addition of catalyst promotes the pyrolysis 
of oily sludge. This result is consistent with the previous 
characterization. The theory of carbonium ion explains the 
reaction mechanism of TiO2/bentonite(2) catalytic cracking. 
A carbonium ion is a hydrocarbon ion formed by carbon 
lacking a pair of valence electrons. The carbonium ion is 
generated by obtaining a hydrogen ion H+ from an olefin 
molecule, as shown in formula (1). The carbonium ion 
theory illustrates the role of the catalyst, which provides H+ 
on the catalyst surface. The hydrocarbon can react by the 
way of forming carbonium ion so that the activation energy 
of the reaction can be reduced and the reaction rate can be 
increased.

 CnH2n+H+ → CnH
+

2n+1  …(1)

Effect of Catalyst on Pyrolysis Conditions of Oily 
Sludge

The effect of the amount of catalyst on the oil recovery 
rate of pyrolysis process: When the pyrolysis time was 
4 h, the pyrolysis temperature 450°C, the heating rate  
10°C/min and the nitrogen flow rate 100 mL/min, the effect 
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of the amount of catalyst on the oil recovery rate of pyrolysis 
process was investigated.

From Fig. 9, the oil recovery rate increases with the in-
crease of catalyst addition amount when the catalyst addition 
is between 0.5-1%. When the amounts of catalysts are more 
than 1%, the oil recovery rate has decreased. Considering 
the cost of the catalyst, when the amount of catalyst added 
was 1%, the oil recovery rate is the highest.

Effect of catalyst on pyrolysis temperature of oily sludge: 
When the pyrolysis time was 4 h, the heating rate was 10°C/
min, the nitrogen flow rate was 100 mL/min and catalyst 
quantity was 1%, the effect of the pyrolysis temperature on 
the oil recovery rate of pyrolysis process was investigated.

It can be seen from Fig. 10 that in the process of sludge 
pyrolysis, the oil recovery rate without the catalyst and 
the optimum catalyst is different from the change of tem-
perature. The pyrolysis process without catalyst added the 
maximum oil recovery at 450°C, which was 76.06%. With 

the addition of a catalyst, the maximum oil recovery can 
reach 85.49% at 420°C. The recovery rate of pyrolysis oil 
is significantly higher than that without catalyst and com-
pared with non-catalyst, it can be reduced by 30°C when the 
maximum oil recovery rate is reached. When the temperature 
gradually increased, macromolecular organic compounds 
began to pyrolyse into some small molecules, oil recovery 
rate gradually increased as the temperature continues to 
rise, macromolecular pyrolysis reaction process with many 
intermediate products will occur secondary pyrolysis (Zheng 
2013, Yang et al. 2014). This will lead to lower oil recovery 
rates. It is indicated that the catalyst has an obvious effect 
on the pyrolysis process.

Effect of catalyst on pyrolysis time of oily sludge: When 
the pyrolysis temperature was 420°C, the heating rate 10°C/
min, the nitrogen flow rate 100 mL/min and catalyst quantity 
1%, the effect of the pyrolysis time on the oil recovery rate 
of pyrolysis process was investigated.

 From Fig. 11 it can see that the pyrolysis time is a balance 
factor of the pyrolysis of oily sludge, which also has a direct 
impact on the pyrolysis process. It can be seen from the figure 
that the recovery rate of pyrolysis oil increases first and then 
decreases with the extension of residence time. Without a cat-
alyst, the oil recovery rate was 76.07% at 4 h pyrolysis time. 
After adding a catalyst, the oil recovery rate reached 85.82% 
at 3 h pyrolysis time. During the reaction, when the reaction 
stays for a short time, some of the sludge has not reached the 
current temperature of the full state of pyrolysis, and when 
the reaction time is too long, the oil occurred the secondary 
pyrolysis (Zhang 2016). Compared with the non-catalyst, 
it can be reduced by 1 h when the maximum oil recovery 
rate is reached. Catalyst has the obvious promoting effect 
on the pyrolysis reaction and increased the recovery rate of 
oil. The activation energy required for pyrolysis reaction 
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is reduced, and the pyrolysis reaction time is shortened. It 
provides technical support for catalytic pyrolysis technology.

Effect of catalyst on the nitrogen flow rate of oily sludge: 
When the pyrolysis temperature was 420°C, the pyrolysis 
time 3 h, the heating rate 10°C/min and catalyst quantity 
1%, the effect of nitrogen flow rate on the oil recovery rate 
of oily sludge was studied. The result is shown in Fig. 12.

It can be concluded that the oil recovery rate increases 
first, and then decreases with the increase of nitrogen flow 
rate. When the nitrogen flow rate under 100 mL·min-1, the 
oil recovery rate shows an increasing trend. Because part of 
the oil-water mixture produced in the pyrolysis cannot be 
taken out to the condensation system in time, and secondary 
cracking occurs. However, when the nitrogen flow rate is 
greater than 100 mL·min-1, the oil recovery rate is reduced. 
This is due to the excessive nitrogen flow rate causes the 
oil-water mixture generated during the pyrolysis process 

to be carried to the tail gas emission system with nitrogen 
(Liu 2016). Compared with the non-catalyst, the addition of 
TiO2/bentonite(2) in the process of pyrolysis of oily sludge 
has an obvious effect in promoting the recovery rate of oil.

Effect of catalyst on the heating rate on of oily sludge: 
When the pyrolysis temperature was 420°C, the pyrolysis 
time 3 h, the nitrogen flow rate 100 mL/min and catalyst 
quantity 1%, the effect of the heating rate on the oil recovery 
rate of pyrolysis process was studied. The result is shown 
in Fig. 13.

The Fig. 13 shows that when the heating rate is 
10°C·min-1, the oil recovery rate reaches the maximum. At 
the low heating rate, it means that the pyrolysis time of oily 
sludge is prolonged under low temperature conditions so that 
the cracking rate of light components and heavy components 
in the sludge is slowed down. At the high heating rate, 
the light component evaporates quickly without sufficient 
pyrolysis and only the cracking of the heavy components 
occurs, so that the pyrolysis of oily sludge cannot be fully 
carried out (Yang et al. 2015). Compared with the non-
catalyst, the addition of TiO2/bentonite(2) in the process of 
pyrolysis of oily sludge has an obvious effect in promoting 
the recovery rate of oil.

Analysis of Pyrolysis Products

Composition Analysis of the Liquid Phase of Pyrolysis 
Products

It can be seen from Fig. 14 that after the addition of the 
catalyst, the content of heavy components in the pyrolysis 
oil decreases, and the content of light components increas-
es, among them C16-C20 are the master components. In the 
process of pyrolysis of oily sludge, the catalyst was added 
to promote the cracking of heavy components in oily sludge, 
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which increased the content of light components in the recov-
ered oil. It not only improves the recovery rate of pyrolytic 
oil but also improves the quality of the oil. Among the three 
catalysts: bentonite, TiO2/bentonite(1) and TiO2/bentonite(2), 
the catalytic effect of TiO2/bentonite(2) is the best.

Determination of Four Components of Pyrolysis 
Liquid Phase Products

As can be seen from Table 4, compared with the non-catalyst, 
the content of aromatic hydrocarbons, colloids and bitumen 
in the four components of the pyrolysis liquid phase product 
with the catalyst is reduced, and the content of saturated 
hydrocarbons is significantly increased. It is indicated that 
the addition of catalyst promotes the further pyrolysis of oily 
sludge, especially the decomposition of heavy oil so that the 
heavy oil of pyrolysis oil is light. 

Morphology Analysis of Pyrolysis Residue

The SEM analysis of optimum catalyst pyrolysis residue and 
raw mud pyrolysis residue are shown in Fig. 15 and Fig. 16. 
The EDS analysis of pyrolysis residue and raw mud pyrolysis 
residue are shown in Fig. 17 and Fig. 18. Compared with 
the raw mud pyrolysis residue, the optimal catalyst pyroly-
sis residue is porous, the porosity is increased, the particle 
accumulation is loose, the particles become smaller, and 
the particles are not found to be coked (Li et al. 2018). This 
provides a condition for the residue to act as a catalyst (Li 
et al. 2018, Yang et al. 2018, Cheng et al. 2015).

Specific Surface Area and Aperture Determination of 
Pyrolysis Residue

It can be seen from Table 5 that the specific surface area of 

Table 4: Analysis of four components of pyrolysis liquid phase products.

Samples Component/%

Saturated hydrocarbon Aromatic hydrocarbons Glial Asphaltene

Non-catalyst 18.65 32.61 1.95 9.73

Optimum catalyst 30.43 15.52 1.12 1.32
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the optimum catalyst pyrolysis residue is higher than that of 
raw mud pyrolysis residue, the specific surface area increased 
from 3.49 m2/g to 4.24 m2/g. This provides a condition for 
the residue to act as a catalyst.

Elemental Analysis, Oil Content and Calorific Value of 
Pyrolysis Residue

According to Table 6, the content of N element in residue 
increases obviously after adding a catalyst, the content of H 
element decreases, the C/N decreases, and the C/H increases, 
which indicates that the catalyst can fix nitrogen and dehy-
drogenate during pyrolysis. The oil content of the residue 
without catalyst was 2.23%, while the oil content of the 
residue was reduced to less than 2% after adding the catalyst, 
indicating that after adding the catalyst, more oil components 
were converted into the liquid phase and gas phase, thus oil 
content of the residue has reduced. The lower the oil content 
in the residue, the smaller the corresponding calorific value.

CONCLUSIONS

 1. A TiO2/bentonite system with well-dispersed TiO2 
particles in the bentonite was prepared by the sol-gel 
method. It was characterized that TiO2 was successfully 
loaded onto bentonite.

 2. The effects of catalysts on different pyrolysis temper-
ature, pyrolysis time, heating rate and nitrogen flow 
rate were obtained. The recovery rate of pyrolysis oil 
is significantly higher than that without catalyst and 
compared with non-catalyst, it can be reduced by 30°C 
when the maximum oil recovery rate is reached. Com-
pared with the non-catalyst, it can be reduced by 1 h 
when the maximum oil recovery rate is reached.

 3. This work shows the feasibility of introducing TiO2/ben-
tonite catalysts to sewage sludge for regulating pyrolysis 
and consequently both the yield of pyrolysis oil and the 
quality of pyrolysis oil were enhanced. The recovery rate 
was 8.1% higher than that without a catalyst.
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