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	        ABSTRACT
This study focuses on assessing the toxicity levels in fruits and vegetables based on the 
presence of polycyclic aromatic hydrocarbons (PAHs), particularly in regions affected by 
industrial and vehicular pollution where the particulate matter deposits on the plant surfaces. 
Traditional methods, including Gas Chromatography/Mass Spectrometry (GC/MS) and High-
Performance Liquid Chromatography (HPLC), are used to measure PAH levels in fruits and 
vegetables, which are found to be valuable but expensive and time-consuming. However, 
the detection of toxicity relies on either expert knowledge or experimental analysis when 
compared with the limitations set by EFSA (European Food Safety Authority). Therefore, 
in this study, artificial intelligence techniques have been employed to evaluate the toxicity 
levels based on 16 PAHs. The PAH concentrations in fruits and vegetables were collected 
from different articles corresponding to safe and unsafe datasets and then validated through 
statistical analysis. The validated dataset is classified using different machine learning 
algorithms. Based on the output from the neural network, the level of toxicity is also scaled 
and compared with the targeted outputs. The promising results of the classification of toxicity 
using artificial intelligence methods are substantiated by an experimental study and validated 
through statistical methods. From the results, it can be observed that the machine learning 
algorithm has given classification accuracy of more than 90% along with their degree of 
harmfulness. This research holds implications for food safety and public health, offering a 
novel approach to the interdisciplinary understanding of climate change by addressing the 
impact of environmental contaminants on the edibility of fruits and vegetables.

INTRODUCTION

In recent years, there has been a growing concern about the impact of polycyclic 
aromatic hydrocarbons (PAH) on both environmental and public health (Abdel-
Shafy & Mansour 2016). These contaminants, which are generated from various 
anthropogenic and natural sources, have been found to have adverse effects on 
ecosystems and human well-being. Multiple studies have shown that exposure 
to polycyclic aromatic hydrocarbons can harm human health, especially for 
vulnerable populations such as children, older adults, and individuals with existing 
health problems (Mallah et al. 2022, WHO 2021, Singh & Agarwal 2018). From 
the literature, it is observed that fruits and vegetables are consumed in different 
forms for their nutritional values, but the growth of these fruits and vegetables is 
contaminated through pollution in different forms, which results in the adsorption 
of Polycyclic Aromatic Hydrocarbons (Camargo & Toledo 2003). Recent studies 
have shown that PAH contamination has an impact on public health and is mostly 
observed in urban areas due to the emission of PAHs from automobiles and cooking 
oil fumes. In Brazil, a case study on the impact of PAH contamination was examined 
in street food vendors that resulted in potential health risks such as diabetes, 
oxidative stress, cardiovascular and pulmonary disease, respiratory diseases, 
skin allergies, and cancer among individuals (Deligannu & Muniandy 2024). A 
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study on the potential health risks due to PAH exposure in 
industrial areas was conducted in India. Soil samples were 
collected and assessed from two cities. PAH sources were 
identified as traffic emissions, industrial emissions, and 
coal combustion for domestic livelihood. The health risk 
assessment resulted in a high potential risk of cancer due 
to the consumption of contaminated vegetables from these 
areas (Sankar et al. 2023). In China, a study conducted on 
farmland indicated the presence of 16 PAHs in soil and crops 
with varying concentrations. It showed that leafy vegetable 
crops had higher PAH concentrations in leaves compared 
to the roots and fruits, whereas the fruit and vegetable crops 
showed higher PAH concentrations in fruits than in roots or 
leaves (Cui et al. 2022). During the health risk assessment, 
it posed a high carcinogenic risk in adult males and females 
based on the dietary intake. 

From these studies, it is evident that PAH’s analysis 
on consumables is necessary to be studied and detection 
of toxicity should be considered as an important measure 
to protect the environment. Contrarily, the toxicity of food 
products or consumables may be a potential threat to mankind, 
putting individual lives at high health risk. This resulted in 
us initiating exploring and evaluating PAHs, as well as 
developing an intelligent system for detecting toxicity. PAHs 
are formed during the incomplete combustion of garbage, 
organic waste, sewage sludge, wood, gas, etc. PAHs are 
composed of carbon and hydrogen atoms and contain two or 
more aromatic rings (Khalili et al. 2021). The contamination 
of PAH is widespread in the environment, both in terrestrial 
and aquatic organisms, due to which the presence of PAH 
in the food supply is considerably high (Paris et al. 2018). 
The contamination of PAH in agricultural and animal food 
products can occur during growth, transportation (exhaust 
from combustion engines), storage, and also when the food is 
smoked, grilled, roasted, fried, and cooked (Paris et al. 2018). 
While there are over 100 recognized PAHs, the United States 
Environmental Protection Agency (UPESA) has identified 
only 16 as the primary concern (Abou-Arab et al. 2014) 
because these PAHs are unsafe and can enter a variety of 
life on earth through inhalation, ingestion, and even through 
skin contact (Omoyeni et al. 2023). PAH contamination in 
raw food such as fruits and vegetables is through soil, water, 
and air (Paris et al. 2018). In addition to this, the amount of 
PAH concentration depends on environmental PAH (urban 
areas have a high amount of PAH), soil characteristics (weak 
soil needs to be strengthened using chemical fertilizers), and 
physiological properties, e.g., the longer the growth period of 
the plant, higher the absorption of PAH contaminants (Khalili 
et al. 2021). Fruits and vegetables can get contaminated with 
PAHs when air particulate matter settles on their surfaces. 
Plants near industries or roads tend to have more PAH 

deposits, including Benzo[a]pyrene, dibenz[a,h]anthracene, 
and chrysene, compared to plants in rural areas (Ashraf & 
Salam 2012). In fruits and vegetables, low molecular weight 
(LMW) PAHs and high molecular weight (HMW) PAHs are 
adsorbed by the waxy surface, particularly on outer leaves 
and fruit peels (Camargo & Toledo 2003). The concentration 
of PAHs tends to be higher on these exposed surfaces.

Studies reveal variations in PAH concentrations among 
different parts of plants, with root vegetables potentially 
having higher levels than stem vegetables (Zhong & Wang 
2002). Research in China identified factors affecting PAH 
levels in vegetables, including anthropogenic emissions, 
vegetable species, and wind direction (Jia et al. 2018). 
Common PAHs found in fruits and vegetables include 
fluorene, fluoranthene, pyrene, anthracene, phenanthrene, 
benzo(a)anthracene, and benzo(a)pyrene, with leafy and 
stem vegetables having higher concentrations (Zhong & 
Wang 2002). Similarly, Choochuay et al. (2023) analyzed 
the toxicity and health risk assessment based on the PAH 
concentration in Thai and Myanmar rice. From this study, 
it is identified that the level of PAHs with its toxicity and 
health risk assessment. The findings can be summarized 
as follows: a) The level of PAHs in Thailand varied from 
0.09 - 37.15 ng.g-1 with an arithmetic mean of 18.22 + 11.76 
ng.g-1, whereas that in Myanmar varied from 0.07 – 150.73 
ng.g-1 with an arithmetic mean of 34.70 + 40.57 ng.g-1.
Due to increased food security concerns, numerous studies 
explore threats associated with consuming contaminated 
food (Abou-Arab et al. 2014).

Khalil et al. (2021) conducted a study and the analysis of 
PAHs in fruits and vegetables revealed high concentrations of 
acenaphthene (135.1 ± 7.1 µg.kg-1) and naphthalene (114.1 
± 5.0 µg.kg-1), while benzo(k)fluoranthene, benzo(a)pyrene, 
benzo(g,h,i),fluoranthene, Indeno(1,2,3-cd)pyrene, and 
benzo(g,h,i)perylene were not detected (Khalili et al. 2021). 
Another study by Paris et al. (2018) reported relatively low 
PAH levels ranging from 0.01 to 0.5 µg.kg-1 in wet weight 
for fruits and vegetables (Paris et al. 2018). However, plants 
near roadways and urban areas can exceed the concentration 
of 5 µg.kg-1 (Paris et al. 2018).

In the experiments conducted in Pakistan and Saudi 
Arabia in 2013 by Mohammad W. Ashraf, root vegetables 
like carrots and potatoes exhibited high PAH concentrations 
of 13 µg.kg-1 and 11 µg.kg-1, respectively, while turnip had 
concentrations of 10.9 µg.kg-1 and 9.26 µg.kg-1. The study 
also observed higher contamination in the peels than the 
cores of fruits and vegetables, with cabbage having the 
highest concentration among leafy vegetables (Ashraf et 
al. 2013, Ashraf & Salam 2012). In India, a study by Nasri 
et al. (2006) identified Anthracene, Naphthalene, Fluorene, 
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Pyrene, Phenanthrene, and Fluoranthene as predominant 
PAHs in vegetable and soil samples. The use of an Isocratic 
High-Performance Liquid Chromatography (HPLC) system 
with UV detection revealed carcinogenic compounds such 
as BAP and dibenz(a,h)anthracene, with LMW-PAHs more 
abundant than HMW-PAHs (Narsi et al. 2006).

 Al-Nasir et al. (2022) evaluated four vegetables, finding 
tomatoes with the highest concentration of 21.774 µg.kg-1 and 
zucchini with the lowest concentration of 10.649 µg.kg-1 (Al-
Nasir et al. 2022). In summary, the literature also emphasizes 
the use of various detection methods, including High-
Performance Liquid Chromatography with fluorescence 
detection (HPLC-FLD) an excellent quantification and 
separation tool. Solid phase microextraction (SPME), a 
sensitive solvent-free sample preparation technology; gas 
Chromatography with Mass Spectrometry (GC-MS), a 
method where two analytical tools combined to identify 
and measure the concentration of chemicals in food and 
environment, and Gas Chromatography with flame ionization 
detector (GC-FID) an analytical technique that is used 
to separate and analyze mixtures consisting of volatile 
compounds (Abou-Arab et al. 2014).

Similar to these technologies, chemical analysis has also 
been done using various techniques such as saponification/ 
ultrasonication, clean-up using a silica solid phase extraction 
cartridge and GC-MS, liquid-liquid extraction with solvents 
like n-hexane to determine the elements of eight PAHs 
(BaA, BkF, BbF, DahA, BaP, BghiP, IP, Chry) in fruits and 
vegetables. The results show that the PAH concentration in 
fruits is 0.67 µg.kg-1, and in vegetables, it is 0.82 µg.kg-1 (Lee 
et al. 2019). In Egypt, Abou-Arab et al. (2014) conducted 
a study on the level of PAH in vegetables and fruits such 
as potatoes, spinach, apple, and guava using GC-MS 
showed high-level concentration in spinach (8.977µg.kg-1), 
potatoes (6.196 µg.kg-1), apple (2.867µg.kg-1) and guava 
(2.334 µg.kg-1). The researcher concluded that preventive 
measures such as thorough washing, boiling, and peeling 
of the skin of fruits and vegetables are effective in reducing 
the amount of PAH consumption(Abou-Arab et al. 2014). 
Okaba et al. (2020) reported that vegetables grown in 
Nigerian traffic routes were tested for PAH concentration 
and evaluated using GC-MS and AAS (Atomic Absorption 
Spectrophotometer), which determined the presence of high 
PAH in vegetables (Okaba et al. 2020). Although vegetables 
were boiled, it did not show a notable difference (p>0.05) in 
the PAH concentration between fresh and boiled vegetables. 
Boiling the vegetables only reduced the mean concentration 
of PAHs (Okaba et al. 2020). Another study determined the 
concentration of PAH by growing plants in contaminated 
and uncontaminated soil. The results showed elevated levels 

of PAH in vegetables and fruits grown in contaminated 
soil (Samsøe-Petersen et al. 2002). In samples of tomatoes 
and okra, the Σ16 PAH concentration was in the range of 
2.12±1.5 and. 99.88±29.18, respectively. Also, naphthalene 
exhibited a high concentration of 60% in vegetables 
(Omoyeni et al. 2023, Tesi et al. 2021). The concentration 
of Σ16 PAH in vegetables was in the range of 532 to 2261 
in leafy vegetables of southern Nigeria (Tesi et al. 2021). 
Ce-Hui Mo, 2009 reported that the determination of PAH 
and PAE (Phthalic Acid Esters) in vegetables in South China 
indicated that PAE was present in higher amounts than total 
PAH. However, due to the seasonal changes of PAHs in 
vapor and particulate matter in the region, more studies are 
to be done to test variations of PAHs in various classes of 
vegetables (Mo et al. 2009). Therefore, from the review it 
can be observed that the analysis of PAH and their effects 
on the health and environment are alarming. There are many 
studies on the identification of hazards and toxicity using 
machine learning algorithms. However, there is no research 
on the statistical measures of the PAHs of the samples or 
measuring the PAH levels (Al-Nasir et al. 2022, Khalili et al. 
2021, Samsøe-Petersen et al. 2002). There are some studies, 
such as Pandey et al. (2023), that have used machine learning 
algorithms in the applications of the food processing industry 
to identify the hazards associated with the preservation 
of fruits and vegetables (Pandey et al. 2023). PAHs are 
present in various fruits and vegetables due to factors like 
location, agricultural practices, and storage. This indicates 
the widespread presence of PAHs, necessitating monitoring. 
It is also observed by WHO, under the natural toxins in food 
(WHO 2023), stated that research experts review all the 
available studies and suggest an outcome based on the level 
of health concern, which includes measures to prevent and 
control contamination. The authors have provided a detailed 
discussion on the future of machine learning algorithms 
in the food industry, the factors that affect the quality of 
food being preserved, and assist in determining the optimal 
parameter combinations for deciding the maximum produce 
preservation.

Megalingam et al. (2019) employed different machine 
learning like k-cluster, computer vision, and artificial 
intelligence techniques along with color classification to 
determine rotten food (Megalingam et al. 2019). Therefore, 
it can be observed from the above literature that PAHs 
adhere to the surfaces of fruits and vegetables, particularly 
on outer leaves and peels. It highlights variations in the 
concentration of PAH among different plant parts and 
factors influencing PAH levels.  While there are multiple 
methods to analyze the PAH values, artificial intelligence 
techniques have the potential to outreach in the field of 
toxicity detection. Analyzing the PAH values using a 
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machine learning algorithm is one of the initial works to 
determine the toxicity of PAH in fruits and vegetables. It 
can also be perceived that Machine learning algorithms and 
various AI (Artificial intelligence) techniques are used to 
examine the perishing nature of food, but there is no research 
conducted to measure the toxicity level nor predict the degree 
of harmfulness of PAH in fruits and vegetables. Hence, in 
this study, an intelligent toxicity detection system has been 
developed to explore the impact of PAH toxicity in fruits 
and vegetables.  Machine learning algorithms have been 
used to analyze PAH contamination (Vasantha et al. 2023) 
in fruits and vegetables, providing an efficient and accurate 
monitoring method. Machine learning algorithms can handle 
complex data and detect even trace levels of PAHs, which 
traditional methods have some limitations. By training 
models on historical data, the intelligent model can be used to 
predict contamination trends and circumstances for proactive 
measures ahead. Incorporating recent data and case studies 
highlights the critical issue of PAH contamination. Thus, 
the proposed system of toxicity detection can be helpful to 
society, ensuring food safety and protecting public health.

The proposed system, depicted in Fig. 1, utilizes machine 
learning algorithms to analyze the collected empirical data 
and provide results on toxicity. A detailed explanation of the 
implementation of the proposed system has been discussed 
in the subsequent sections of this article.

MATERIALS AND METHODS

The main aim of this study is to employ artificial intelli-
gence techniques for assessing the toxicity levels of fruits 
and vegetables based on 16 PAHs. A classification system 
is proposed, utilizing machine learning algorithms such as 

Support Vector Machine (SVM), Ensemble, Regression, Dis-
criminant, Tree, k-nearest Neighbour(k-NN), Naïve Bayes, 
Artificial Neural Network (ANN) to classify the toxicity 
in fruits and vegetables. Additionally, the research aims to 
compare the outcomes of these models. 

The classification model takes the concentration of 16 
PAHs in fruits and vegetables as input and classifies the 
level of toxicity based on the machine learning algorithm. 
The subsequent section details the data collection process, 
its validation, design, and evaluation using machine learning 
algorithms.

PAH Data Collection

The data collected for this study is based on the experimental 
analysis from different research in the field of environmental 
pollution, environmental contamination and toxicology, 
polycyclic aromatic compounds, and toxic chemical hazards 
in food and feed (Paris et al. 2018) From the literature can be 
summarized that PAH deposit is found more on the surface 
of the fruits, leaves, and vegetables than the inner tissues. 
As stated by WHO, “natural toxins need to be kept as low 
as possible to protect people”. Therefore, in this study, fruits 
and vegetables were considered for toxicity detection using 
AI techniques. The PAHs corresponding to the proposed 
objectives were collected from 24 articles published in 
various platforms such as IEEE, Nature Environment 
and Pollution Technology, Elsevier, International Journal 
of Nutrition and Food Sciences, MDPI, Journal of 
Environmental Science and Health and others. The total 
number of samples is 519. These samples represent different 
fruits and vegetables, and these are experimented with from 
various parts of the world. Therefore, the data relating to the 
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the Maximum Contamination limit and expert knowledge, 
the 519 data have been sorted as safe and unsafe for 
consumption. The total number of data corresponding to safe 
and unsafe are 231 and 288, respectively. The segregated 
dataset is validated using ANOVA, and the outcomes are 
reported in the subsequent section.

Statistical Analysis of PAHs  

The examination of the 16 PAHs across the 519 samples 
reveals a non-linear pattern, making it challenging to 
determine any possible significance through visual inspection 
for categorizing the data as safe or unsafe. Consequently, 
adhering to established standards and limitations for specific 
PAHs, the data was categorized into safe and unsafe. 
This research endeavors to validate whether there is any 
significant difference between these segmented datasets 
(Frossard & Renaud 2021, Yang et al. 2020). In this study, 
the data collection techniques or experiments were not used 
to measure the PAHs. Instead, the toxicity of PAHs was 
assessed in fruits and vegetables using machine learning 
methods. The data were acquired from a variety of articles 
that use experimental measures. As a result, there is no 
possibility of missing data. In addition, the dataset has also 
been processed using Analysis of variance (ANOVA) to 
assess the level of significance. The preprocessing findings 
and variance analysis are reported in the subsequent sections.

In the initial analysis, the 16 PAHs of both safe and unsafe 
datasets were subjected to ANOVA statistical analysis, 
but the results failed to meet the required hypothesis. The 
hypothesis for the validation process is as follows:

	 1.	 The null hypothesis is that there is no significant 
difference among the samples.

	 2.	 Whereas the alternate hypothesis is that at least a sample 
should differ significantly from other samples. 

The level of significance considered is 0.05. The null 
hypothesis will fail to accept if the probability value, that 
is, the p-value, is less than 0.05.  The results indicated a 
significant difference between the safe and unsafe datasets, 
contradicting the latter hypothesis. Further investigation 
revealed that the variance stemmed from the missing PAHs 
in some samples, as researchers focused on measuring 
the main PAHs to determine toxicity. To address this, 
various statistical measures were employed to ascertain if 
a regression line adequately fits the data. The validation in 
this analysis involved calculating the sum of square values 
of the PAHs. The results of each analysis are detailed below.

From the ANOVA analysis, to determine the significance 
between safe and unsafe, the F value for the 519 samples 
resulted in 1.3067, and the p-value is 0.001, which confirmed 

concentration of PAH in leafy vegetables like spinach, jute, 
and pumpkin leaves (Camargo & Toledo 2003, Khalili et al. 
2021, Omoyeni et al. 2023, Tesi et al. 2021, Mo et al. 2009, 
Janska et al. 2006), as well as small, medium and large sized 
vegetables (Khalili et al. 2021, Zhong & Wang 2002, Ashraf 
et al. 2013, Al-Nasir et al. 2022, Lee et al. 2019, Tuteja et 
al. 2011)  and fruits (Camargo & Toledo 2003, Khalili et al. 
2021, Bishnoi et al. 2006, Janska et al. 2006), other leafy 
vegetables (romaine lettuce, Chinese cabbage, and Shanghai 
green cabbage), stem vegetables (lettuce), seed and pod 
vegetables (broad bean), rhizome vegetables (daikon) were 
considered in this research. PAH concentration of samples 
collected from different experimental results reported in 
research articles are summarized in Table 1.

The PAHs of fruits and vegetables collected in this analysis 
include Acenaphthene (Ace), Acenaphthylene(Aceph), 
Anthracene(An), Benzo[b] fluoranthene  (BbF), Benzo[g,h,i]
perylene(BgP), Benzo[k]fluoranthene(BkF), Chrysene(Chr), 
Dibenz[a,h]anthracene(DBA), Fluoranthene(Flu), 
F luo rene (F l ) ,  I ndeno [1 ,2 ,3 - c ,d ]  py rene ( Inp ) , 
Phenanthrene(Ph), Pyrene(Pyr) and Naphthalene (Nfl). 
Among these PAHs, the Scientific Committee on Food 
and European Food Safety Authority (EFSA), which is 
an agency that provides scientific advice to risk managers 
and communicates the risk associated with the food chain, 
considers BaP, DBahA, BaA, BbF, BjF, BkF, CHR, BghiP, 
and IP as potentially carcinogenic and genotoxic compounds 
(Paris et al. 2018).

According to the US Environmental Protection Agency 
(USEPA), fruits and vegetables have lesser concentrations of 
PAH when compared to processed and unprocessed meat and 
meat products. The minimum and maximum recommended 
limits are 0.01 and 0.5 µg/kg (Paris et al. 2018). Based on 

Table 1: Different fruits and vegetables for PAH analysis.

Categories of fruits 
& vegetables

No. of 
samples

References

Leafy vegetables 122 (Ramezan et al. 2019), (Samsøe-
Petersen et al. 2002) (Al-Nasir et 
al. 2022), (Lee et al. 2019), (Mo 
et al. 2009), (Paris et al. 2018)

Root vegetables 108 (Ramezan et al. 2019), (Ashraf & 
Salam 2012), (Ashraf et al. 2013)

Stem vegetables 157 (Al-Nasir et al. 2022), (Ashraf, 
n.d.), (Ashraf & Salam 2012), 
(Ashraf et al. 2013), (Janska et 
al. 2006), (Jia et al. 2018)

Fruits 132 (Ramezan et al. 2019), (Samsøe-
Petersen et al. 2002), (Camargo 
& Toledo 2003), (Paris et al. 
2018)

Total 519
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that there is a significant difference between the safe and 
unsafe data. Hence, the determination of toxicity in fruits 
and vegetables by expert knowledge and the standard limit 
has been validated by analysis of variance. The results of 
the variance analysis done on the data set are consolidated 
in Table 2.

From the ANOVA analysis, to determine the significance 
between the samples of safe data, the F-value for 231 samples 
resulted in 0.6794, and the p-value was 0.9982. As the level 
of significance is more than the threshold limit, samples of 
the safe category fail to differ significantly from each other. 
The test results are presented in Table 3.

Similarly, from the ANOVA analysis, to determine the 
significance between the samples of unsafe data, the F-value 
for 288 samples resulted in 1.2918, and the p-value was 
0.0151. As the p-value is less than 0.05, samples of the unsafe 
category differ significantly from each other.  Therefore, it 
can be concluded that there is a significant difference between 
the concentration of PAHs of the samples corresponding to 
unsafe categories as the samples are collected from fruits 
and vegetables grown in different regions across the globe, 
which are subjected to different environmental conditions 
like temperature variations, air pollution, water and soil 
quality. The test results are presented in Table 4. 

From the above statistical analysis, it has been observed 
that there is no significant difference between the samples 
for the safe data set, whereas, for the unsafe data set, there is 
a significant difference between the samples. This is due to 
a large variation between the PAH of fruits and vegetables, 
with scattered concentrations of PAHs across the dataset. The 
minimum and maximum values of such PAHs are tabulated 
in Table 5. Therefore, the unsafe data has been analyzed 
further to understand the distribution of PAHs in each sample 
of fruits and vegetables. 

However, the above scenario is not encountered in 
the samples related to safe data. Hence, the data has been 
analyzed using the sum of square method (Nataraj et al. 
2022). The following equation (1) has been used for the 
computation of the sum of squares of each element in the 
dataset. 

	

using the sum of square method (Nataraj et al. 2022). The following equation (1) has been used for the computation 
of the sum of squares of each element in the dataset.  

 The sum of the squares = ∑ ∑ 𝑥𝑥(𝑖𝑖, 𝑗𝑗)216
𝑗𝑗

519
𝑖𝑖=1          … (1)  	  ...(1)

Where i represents the row index ranging from 1 to 512 
dataset.

j represents the column index ranging from 1 to 16 PAHs

x(i,j) represents the value at the ith  row and jth column 
of the 512 x 16 dataset

Then the sum of square values is analyzed using analysis 
of variance, and the F value has been calculated as 0.9897 
and the p-value as 0.05346. As the p-value is greater than 
0.05, samples fail to differ significantly from each other. The 
analysis of variance results is shown in Table 6.

In this study, a stratified sampling technique has been 
employed, which ensures the samples were collected from 
different articles (representing various regions, at different 
seasons, and multiple sources e.g., local markets, farms, 
urban and rural areas). Therefore, this approach provides a 

Table 2: ANOVA Measures Corresponding to Safe and Unsafe Data.

Source of Variation SS df MS F P-value F crit

Between Samples 1E+09 518 2E+06 1.3067 0.0012 1.1556

Within Samples 9E+08 519 2E+06

Table 3: ANOVA Measures Between Samples of Safe Data.

Source of Variation SS df MS F P-value F crit

Between Samples 123.87 230 0.5386 0.6794 0.9983 1.2425

Within Samples 183.12 231 0.7927

Table 4: ANOVA Measures between samples of unsafe data.

Source of Variation SS df MS F P-value F crit

Between Samples 1E+09 287 4E+06 1.2918 0.0151 1.2145

Within Samples 9E+08 288 3E+06

Table 5: Concentration range of PAHs.

PAHs Min Concentration Max Concentration

Nap 0 115.50

Pyr 0 1896.00

Phe -0.03 209.00

Chr 0 2361.00

BaP 0 338.00

BbF -0.05 2361.00

BaA -0.25 176.00
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significant representation of the dataset with high dimensions, 
reducing the likelihood of sampling bias. In this analysis, 
cross-validation techniques have also been employed and 
used to train the machine-learning models. The classification 
models use feature normalization (bipolar normalization) 
and randomization techniques to prevent overfitting. 
Additionally, multiple methods have been used for the 
evaluation and presented the best performance metrics, such 
as the sensitivity of each class, accuracy, and misclassification 
rate. This comprehensive approach strengthens the validity 
of the findings and enhances the credibility of this research. 
The following section presents a detailed explanation of the 
modeling of the machine learning algorithms and the results.

Design and Evaluation of Machine Learning Algorithms 
for the Toxicity Detection System   

Machine learning, a subset of Artificial Intelligence, leverages 
algorithms and data to emulate human brain functionality 
(Nataraj et al. 2021). Widely employed for pattern recognition, 
clustering, and signal processing, machine learning algorithms 
play a crucial role in prediction and clustering based on 
labeled or unlabelled datasets (Pandey et al. 2023). In our 
analysis for toxicity detection, we have adopted simple and 
well-established learning algorithms to evaluate the toxicity 
level of fruits and vegetables. Based on expert knowledge 
and standard limits, the samples were categorized as safe and 
unsafe and validated using ANOVA analysis.

In this research, k-fold cross-validation is utilized for 
data segmentation, and linear and non-linear classifiers are 
employed for data evaluation. The classification algorithms 
are chosen due to their wide acceptance and convenience in 
modeling and evaluating PAH datasets.

The designed models feature 16 inputs and 1 output, 
evaluated using different machine learning algorithms 
to classify toxicity in fruits and vegetables. The neural 
network model incorporates one hidden layer with 15 hidden 
neurons, utilizing the Levenberg-Marquardt backpropagation 
algorithm for weight updating. Error calculation is performed 
using the Mean Square Error method. The k-NN and SVM 
models are trained with standard parameters. The value of K 
varies from 0 to 10 for k-NN models, while a standard size 
is chosen as the sigma value for SVM models.

This comprehensive approach aims to utilize diverse 
machine-learning techniques for robust toxicity detection, 

providing a foundation for effective analysis and decision-
making in environmental assessments.

k-fold Cross-Validation

To assess the classification model and evaluate system 
performance, the k-fold cross-validation method is employed 
in this research. This sampling process serves to generalize 
the model and aids in selecting the most appropriate one 
for the task at hand. Well, many segmentation techniques 
are used in the classification, such as hold-out, leave-one-
out cross-validation, and k-fold cross-validation. It is well 
known that the usual methods, such as Hold Out methods, 
were used for large data sets, and the leave-one-out-cross-
validation is very similar to k-fold cross-validation and the 
random splitting such as 60-40, 70-30, 80-20 methods may 
lead to overfitting. In this analysis, k-fold cross-validation 
has been chosen since these methods are powerful and can 
generalize the machine learning model, even if the data set/ 
feature set has limited samples. Also, ‘k’ provides equally 
sized validation for multiple epochs.  Specifically, a 5-fold 
cross-validation is utilized, denoted by k=5, where the 
dataset is divided into 5 non-overlapping folds of equal size 
(Megalingam et al. 2019).

This method is instrumental in training and testing 
the model across all dataset subsets, effectively reducing 
variance (Sonwani et al. 2022). The PAH dataset, with its 
raw 519 × 16 features, undergoes segmentation into training 
and testing datasets through the five-fold cross-validation. 
The training dataset comprises 80% of the total dataset (415 
× 16 features), while the testing dataset holds the remaining 
20% (104 × 16 features). This five-fold method results in 
the creation of five distinct training and testing sets. Fig. 
2 describes the entire process of 5-fold cross-validation 
(Ramezan et al. 2019, Wong & Yeh 2019).

The segmented training sets are concurrently trained using 
various algorithms, including feed-forward backpropagation-
based Neural Network, Support Vector Machine (SVM), 
Ensemble, Regression, Discriminant, Tree, k Nearest 
Neighbour (k-NN), and Naive Bayes. Subsequently, the 
trained models undergo testing using the remaining five 
distinct 20% testing datasets.

The training and test results derived from the algorithms 
are discussed in detail in the subsequent section of 
this article, providing a comprehensive understanding 

Table 6: ANOVA Measures between samples corresponding to the sum of square values of unsafe.

Source of Variation SS df MS F P-value F crit

Between samples 3E+13 287 9E+10 0.9898 0.5347 1.2145

Within Samples 3E+13 288 9E+10    
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of the model’s performance across diverse evaluation  
scenarios.

RESULTS AND DISCUSSION

The main aim of this research is to understand the levels of 
toxicity in fruits and vegetables using a machine learning 
algorithm and analyze the levels of Polycyclic Aromatic 
Hydrocarbons (PAHs). The main objective revolves around 
the careful investigation of PAHs collected from various 
sources, validated by a comprehensive statistical analysis to 
correlate the data set, discerning between safe and unsafe data.

Analysis of the collected PAHs led to the development of 
a robust two-class pattern recognition model. The dataset of 
16 input features is used as input to various machine learning 
algorithms, each of which is characterized by different 
technical specifications. Given the nature of this binary 
classification problem, only one output neuron is considered. 
Based on the outcomes, the results highlight that the machine 
learning method achieves over 85% accuracy in classifying 
two-class problems. The following section provides details 
on the results of various machine-learning approaches and 
how they contribute to the detection of toxicity in fruits and 
vegetables.

Classification of Safe and Unsafe Data using MATLAB 
Classification Learner app

In this study, the development of machine learning  

algorithms for toxicity analysis on fruits and vegetables 
was undertaken using MATLAB’s Classification Learner 
application (Wang et al. 2022). While some algorithms were 
directly implemented through the Classification Learner, 
others required custom parameterization. In this research, 
various classification algorithms have been examined in an 
attempt to establish a reliable and efficient model for detect-
ing toxicity in fruits and vegetables. Various classification 
algorithms have been used in this evaluation process to 
determine a reliable and efficient model for the detection of 
toxicity in fruits and vegetables. The classification models 
were designed with 16 inputs and 2 outputs by applying 
respective approaches. The Discriminant Analysis classifier 
has been employed with linear (LDA- Linear discriminant 
analysis) and quadratic (QDA- quadratic discriminant anal-
ysis) discriminant approaches, which is ideal for the analysis 
of high dimensional data with limited significance in feature 
interactions (Le et al. 2020). This model is specifically suit-
able for toxicity classification based on its ability to handle 
various covariance structures, providing robust performance 
among various correlations of PAH.  Ensemble models 
were designed with bagged trees and RUSBoosted trees that 
enhance the model’s robustness and handle class imbalance 
(Ampomah et al. 2020). The ensemble model is especially 
suited for classification tasks involving toxicity detection 
and offering a balance between accuracy and computational 
efficiency. Whereas Kernel models were designed using 
SVM and logistic regression kernels. These models can 

can generalize the machine learning model, even if the data set/ feature set has limited samples. Also, ‘k’ 
provides equally sized validation for multiple epochs.  Specifically, a 5-fold cross-validation is utilized, denoted 
by k=5, where the dataset is divided into 5 non-overlapping folds of equal size (Megalingam et al. 2019). 

This method is instrumental in training and testing the model across all dataset subsets, effectively 
reducing variance (Sonwani et al. 2022). The PAH dataset, with its raw 519 × 16 features, undergoes 
segmentation into training and testing datasets through the five-fold cross-validation. The training dataset 
comprises 80% of the total dataset (415 × 16 features), while the testing dataset holds the remaining 20% (104 
× 16 features). This five-fold method results in the creation of five distinct training and testing sets. Fig. 2 
describes the entire process of 5-fold cross-validation (Ramezan et al. 2019, Wong & Yeh 2019). 

 

 

Fig. 2: Flowchart of K-Fold Cross Validation. 

 

The segmented training sets are concurrently trained using various algorithms, including feed-forward 
backpropagation-based Neural Network, Support Vector Machine (SVM), Ensemble, Regression, 
Discriminant, Tree, k Nearest Neighbour (k-NN), and Naive Bayes. Subsequently, the trained models undergo 
testing using the remaining five distinct 20% testing datasets. 

The training and test results derived from the algorithms are discussed in detail in the subsequent 
section of this article, providing a comprehensive understanding of the model's performance across diverse 
evaluation scenarios. 

RESULTS AND DISCUSSION 

The main aim of this research is to understand the levels of toxicity in fruits and vegetables using a 
machine learning algorithm and analyze the levels of Polycyclic Aromatic Hydrocarbons (PAHs). The main 
objective revolves around the careful investigation of PAHs collected from various sources, validated by a 
comprehensive statistical analysis to correlate the data set, discerning between safe and unsafe data. 

Analysis of the collected PAHs led to the development of a robust two-class pattern recognition model. 
The dataset of 16 input features is used as input to various machine learning algorithms, each of which is 
characterized by different technical specifications. Given the nature of this binary classification problem, only 
one output neuron is considered. Based on the outcomes, the results highlight that the machine learning method 
achieves over 85% accuracy in classifying two-class problems. The following section provides details on the 

Fig. 2: Flowchart of k-Fold Cross Validation.
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capture complex patterns through non-linear transformations 
(Colkesen et al. 2016). An advantage of the kernel model 
is its flexibility in handling non-linear relationships, which 
makes it suitable for complex toxicity classification.

 Other models, such as KNN models, were designed 
using fine, medium, and coarse KNN configurations (Ali 
et al. 2020). This model provides an effective and simple 
approach for the detection of toxicity. Naive Bayes models 
are effective for the classification of toxicity due to their 
ability to handle continuous data. This model was designed 
using Gaussian and kernel distributions (Pérez et al. 2009). 
Artificial Neural network models provide high accuracy and 
speed and are also powerful for complex classification tasks 
(Tritsaris et al. 2021). Neural networks were designed using 
wide, bilayered, and trilayered configurations. SVM models 
were designed using various kernel functions such as 
Linear SVM, Quadratic SVM, Cubic SVM, Fine Gaussian 
SVM, Medium Gaussian SVM, and Coarse Gaussian SVM 
(Nanda et al. 2018). These models are suitable for toxicity 
detection due to their robustness and efficiency in binary 
classification tasks. Decision trees are a popular choice as 
they provide interpretable models for toxicity classification. 
These models were designed using fine, medium, and coarse 
configurations (Vargaftik et al. 2021). Regression models 
were designed using binary GLM logistic regression, 
efficient logistic regression, and efficient linear SVM 
(Wu & Yang 2015), which provide accurate, efficient 
predictions and are suitable for binary classifications. The 
design specifications of the classification models are given 
in Table 7.

The design performance of the classification models is 
represented in Table 8, and the results are compared. From 
the results, it can be observed that based on the design and 
performance metrics, the Coarse KNN model has a high 
total cost (validation) of 86, a prediction speed of 9,000, 
and a Training time is 1.2029 sec compared to the other 
models. At the same time, the Trilayered Neural Network 
appears to be the best model for toxicity classification in 
fruits and vegetables, with the lowest total cost (validation) 
of 11, a high prediction speed of 14,000 obs/sec, and a 
reasonable training time of 6.8536 sec. It is now evident 
that neural network models are proven to be efficient in 
terms of design, learning nonlinear patterns, and prediction.

As discussed, the proposed methodology allowed for a 
comprehensive evaluation of each classifier’s performance in 
toxicity detection, with the chosen parameters tailored to the 
characteristics of the dataset and the objectives of the study. 
The results obtained from model 1 classification learner are 
shown in Table 9, presenting the minimum, average, and 
maximum classification accuracy from 10 trials. 

Table 8: The design performance of the classification models.

Model Total Cost 
(Validation)

Prediction 
Speed 
[obs.sec-1]

Training 
Time 
[sec]

Linear Discriminant 71 13,000 13.803

Quadratic Discriminant 67 7,700 13.192

Bagged Trees 25 3,100 4.7758

RUSBoosted Trees 31 3,500 5.5973

SVM Kernel 26 16,000 8.5592

Logistic Regression 
Kernel

34 12,000 7.3023

Fine KNN 20 9,000 2.6819

Medium KNN 24 8,400 2.3804

Coarse KNN 86 9,000 1.2029

Gaussian Naive Bayes 56 7,200 8.8527

Kernel Naive Bayes 54 3,500 8.0303

Wide Neural Network 15 15,000 6.8221

Bilayered Neural 
Network

12 21,000 6.5796

Trilayered Neural 
Network

11 14,000 6.8536

Linear SVM 44 5,000 2.3861

Quadratic SVM 32 7,100 1.6382

Cubic SVM 34 9,400 1.4974

Fine Gaussian SVM 22 7,000 1.4187

Medium Gaussian SVM 32 5,900 1.4945

Coarse Gaussian SVM 64 5,000 1.4597

Fine Tree 17 3,400 13.21

Medium Tree 17 6,000 2.2963

Coarse Tree 24 7,900 1.515

Binary GLM Logistic 
Regression

14 3,800 3.2137

Efficient Logistic 
Regression

14 7,200 2.21

Efficient Linear SVM 19 8,100 1.6321

Min 11 3100 1.2029

Max 86 21000 13.803

Table 9: The classification accuracy of toxicity detection using model 1 
without applying Principal Component Analysis (PCA).

Classification 
models

Classification Accuracy (10 trials)

Model Type MIN [%] MAX [%] Average [%]

Discriminant 86.3198 87.0906 86.7052

Ensemble 81.1175 98.2659 92.3314

Kernel 93.4489 94.9904 94.2197

KNN 83.4297 97.1098 93.7058

Naive Bayes 89.2100 89.5954 89.4027

Neural Network 97.1098 97.8805 97.4952

SVM 70.3276 97.1098 89.8844

Tree 89.7881 91.1368 90.7996

Regression 92.6782 97.8805 95.2794
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From the results, the Ensemble model has the highest 
accuracy of 98.2659% compared to other models. Ensemble 
models combine predictions from multiple machine learning 
models to enhance overall performance. On the other hand, 
the SVM model performed the least, achieving an accuracy 
of 70.3276%. This lower performance can be attributed 
to the challenge of finding the best hyperplane to separate 
different classes, especially in our dataset with non-linear 
characteristics and some PAH values being zero. The SVM 
model’s sensitivity to parameters like the choice of kernel 
and regularization parameter (C) contributed to its specific 
challenges. Despite variations, all models maintained an 
average performance rating exceeding 85%. This summary 
provides a straightforward overview of the results without 
using any feature optimization techniques, emphasizing the 
highest classification accuracy of the Ensemble model and 
the challenges faced by the SVM model in the context of 
the dataset complexity. 

Hence, a classification model has also been developed by 
using PCA (Principal Component Analysis). The classification 
accuracy of the classification models is presented in Table 10. 
By applying PCA, the order of features is sorted according 
to the dominants of the feature, and no PAH values were 
neglected. Following this optimization, the ensemble model 
displayed performance ranging from a minimum of 55.4913% 
to a maximum of 97.88% over 10 different trials. Overall, it 
has been observed that a performance rating of 86% has been 
achieved across all the trials. 

From Table 10, it can also be observed that the traditional 
ANN model achieved a minimum classification accuracy 
of 92.42% and a maximum of 98.26%; this shows the feed 
forward back propagation using the LM algorithm has proven 
the robustness in the non-linear pattern recognition method. 
Similarly, the minimum accuracy of 72.447% and 95.37% of 
maximum accuracy are attained from the k-NN model. The 
SVM classifiers attained a minimum accuracy of 70.327% 

and a maximum accuracy of 97.109%. The results indicate 
that the neural network models, trained using the Levenberg 
backpropagation algorithm, achieved a maximum accuracy 
of 98.26%.

Additionally, the confusion matrices corresponding to the 
classifier models are illustrated in Figs. 3 to 4 and elaborated 
in the following sections. Due to the extensive nature of 
discussing all observations from multiple classifiers, this article 
focuses on presenting the confusion matrix corresponding to 
the maximum classification accuracy achieved by the ANN 
model with PCA versus the minimum classification accuracy 
obtained by the SVM model without PCA. Fig. 3 and Fig. 4 
present the confusion matrix corresponding to the ANN model 
and SVM model, respectively.

Referring to Fig. 3, it can be observed that the SVM 
Model (Without PCA) has the following sensitivity levels.

	 1.	 True Positive Rate for Pattern 1: 97.4%

	 2.	 True Positive Rate for Pattern 2: 48.6%

Table 10: The Classification Accuracy of Toxicity Detection using model 
1 with applying PCA.

Classification 
models

Classification Accuracy (10 trials)

Model Type MIN [%] MAX [%] Average [%]

Discriminant 86.3198 87.0906 86.7052

Ensemble 55.4913 97.8805 87.3732

Kernel 89.5954 95.3757 93.1920

KNN 72.4470 95.3757 91.2653

Naive Bayes 89.2100 94.4123 92.4855

Neural Network 94.7977 98.2659 96.1946

SVM 70.3276 97.1098 92.4213

Tree 89.7881 96.7245 94.0848

Regression 92.6782 97.8805 95.0867

Table 10: The Classification Accuracy of Toxicity Detection using model 1 with applying PCA. 

Classification 
models                        Classification Accuracy (10 trials)

Model Type MIN [%] MAX [%] Average [%]

Discriminant 86.3198 87.0906 86.7052

Ensemble 55.4913 97.8805 87.3732

Kernel 89.5954 95.3757 93.1920

KNN 72.4470 95.3757 91.2653

Naive Bayes 89.2100 94.4123 92.4855

Neural Network 94.7977 98.2659 96.1946

SVM 70.3276 97.1098 92.4213

Tree 89.7881 96.7245 94.0848

Regression 92.6782 97.8805 95.0867

 

From Table 10, it can also be observed that the traditional ANN model achieved a minimum 
classification accuracy of 92.42% and a maximum of 98.26%; this shows the feed forward back propagation 
using the LM algorithm has proven the robustness in the non-linear pattern recognition method. Similarly, the 
minimum accuracy of 72.447% and 95.37% of maximum accuracy are attained from the k-NN model. The 
SVM classifiers attained a minimum accuracy of 70.327% and a maximum accuracy of 97.109%. The results 
indicate that the neural network models, trained using the Levenberg backpropagation algorithm, achieved a 
maximum accuracy of 98.26%. 

Additionally, the confusion matrices corresponding to the classifier models are illustrated in Figs. 3 to 
4 and elaborated in the following sections. Due to the extensive nature of discussing all observations from 
multiple classifiers, this article focuses on presenting the confusion matrix corresponding to the maximum 
classification accuracy achieved by the ANN model with PCA versus the minimum classification accuracy 
obtained by the SVM model without PCA. Fig. 3 and Fig. 4 present the confusion matrix corresponding to the 
ANN model and SVM model, respectively. 

 

 

Fig. 3: Confusion matrix of SVM model with minimum accuracy of classifier 1. 

 

Referring to Fig. 3, it can be observed that the SVM Model (Without PCA) has the following sensitivity levels. 

Fig. 3: Confusion matrix of SVM model with minimum accuracy of classifier 1.
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	 3.	 False Positive Rate for Pattern 1: 2.6%

	 4.	 False Positive Rate for Pattern 2: 51.4%

The two-class SVM model can also be used to determine 
the effectiveness of the classification model for each class 
based on its sensitivity. The sensitivity of the “Safe data” 
category is 97.4%, indicating that the related samples were 
correctly classified with few occurrences of misclassification. 
Similarly, the sensitivity of the “Unsafe data” category is 
48.6%, indicating that the classification model has a lower 
sensitivity and a misclassification accuracy of 51.4%. As a 
result of this, the SVM model developed for the two-class 
problem is not appropriate for the generalization of the 
toxicity detection system.

Referring to Fig. 4, it can be observed that the ANN 
Model (With PCA):

	 •	 True Positive Rate for Pattern 1: 97.4%

	 •	 True Positive Rate for Pattern 2: 99.0%

	 •	 False Positive Rate for Pattern 1: 2.6%

	 •	 False Positive Rate for Pattern 2: 1.0%

The two-class ANN model can also be used to determine 
the effectiveness of the classification model for each class 
based on its sensitivity. The sensitivity of the “Safe data” 
category is 97.4%, indicating that the related samples were 
correctly classified with few occurrences of misclassification. 
Similarly, the sensitivity of the “Unsafe data” category 
is 99.0%, indicating that with more accuracy, the related 
samples were correctly classified. As a result of this, the 
ANN model developed for the two-class problem is suitable 
for the generalization of the toxicity detection system. 
However, we have also considered the four-class problem 
for the generalization of the toxicity detection system. The 
classification model’s effectiveness for the multiclass based 
on its sensitivity has been discussed in the following section.   

Additionally, our observations reveal that the outputs 
from ANN models using a binary activation function ranged 
from -0.22699 to 2.8721 without rounding the net values or 
applying absolute values. Based on these findings, we further 
divided the dataset into four distinct sets: corresponding 
No Harm, Low Harm, Moderate Harm, and Severe Harm. 
These divided datasets were employed to model a multi-layer 
neural network for classifying different levels of toxicity. 
The split datasets were also validated using ANOVA for the 
F-value and P-value, both of which demonstrated significant 
differences between the four toxicity levels.

Level of Toxicity Using Multi-Layer Neural Network

The ANN model for the two-class problem achieved a 
maximum accuracy of 98.26%, with a misclassification of 
6 samples. Regression analysis for the two-class problem 
was performed at various stages of training, validation, and 
testing, as illustrated in Fig. 5 (Faraw 2015). 

The R values during these stages were found to be 
0.99951, 0.96653, and 0.85693, respectively. These R 
values, being close to 1, confirm the robustness of the results 
(Faraw 2015, Judd et al. 2017). Additionally, Fig. 6 displays 
a scattered plot revealing that the output neural network 
effectively discriminates between 0 and 1. 

Leveraging this discrimination, we further divided the 
data into four sets and modeled a multi-layer NN for the four-
class problem. The development of the multi-layer neural 
network model involved configuring 16 input neurons, one 
hidden layer with 15 hidden neurons, and 2 output neurons 
to address the four different toxicity patterns. With 1000 
epochs and a goal parameter set to 1e-10, the MLNN model 
demonstrated a performance of 97% accuracy with mean 
square error (MSE) of 9.99e-11 and a 3% misclassification 
rate. Analyzing the confusion matrix in Table 11 revealed 
accurate classification for all 222 “no harm” samples, 9 

1. True Positive Rate for Pattern 1: 97.4% 
2. True Positive Rate for Pattern 2: 48.6% 
3. False Positive Rate for Pattern 1: 2.6% 
4. False Positive Rate for Pattern 2: 51.4% 

The two-class SVM model can also be used to determine the effectiveness of the classification model for each 
class based on its sensitivity. The sensitivity of the "Safe data" category is 97.4%, indicating that the related 
samples were correctly classified with few occurrences of misclassification. Similarly, the sensitivity of the 
"Unsafe data" category is 48.6%, indicating that the classification model has a lower sensitivity and a 
misclassification accuracy of 51.4%. As a result of this, the SVM model developed for the two-class problem 
is not appropriate for the generalization of the toxicity detection system. 

 

 

 

Fig. 4: Confusion Matrix of ANN model with maximum accuracy of classifier 2. 

 

Referring to Fig. 4, it can be observed that the ANN Model (With PCA): 

   - True Positive Rate for Pattern 1: 97.4% 

   - True Positive Rate for Pattern 2: 99.0% 

   - False Positive Rate for Pattern 1: 2.6% 

   - False Positive Rate for Pattern 2: 1.0% 

The two-class ANN model can also be used to determine the effectiveness of the classification model 
for each class based on its sensitivity. The sensitivity of the "Safe data" category is 97.4%, indicating that the 
related samples were correctly classified with few occurrences of misclassification. Similarly, the sensitivity of 
the "Unsafe data" category is 99.0%, indicating that with more accuracy, the related samples were correctly 
classified. As a result of this, the ANN model developed for the two-class problem is suitable for the 
generalization of the toxicity detection system. However, we have also considered the four-class problem for 
the generalization of the toxicity detection system. The classification model’s effectiveness for the multiclass 
based on its sensitivity has been discussed in the following section.    

Additionally, our observations reveal that the outputs from ANN models using a binary activation 
function ranged from -0.22699 to 2.8721 without rounding the net values or applying absolute values. Based 
on these findings, we further divided the dataset into four distinct sets: corresponding No Harm, Low Harm, 
Moderate Harm, and Severe Harm. These divided datasets were employed to model a multi-layer neural 
network for classifying different levels of toxicity. The split datasets were also validated using ANOVA for the 
F-value and P-value, both of which demonstrated significant differences between the four toxicity levels. 

 

Fig. 4: Confusion Matrix of ANN model with maximum accuracy of classifier 2.
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Level of Toxicity Using Multi-Layer Neural Network 

The ANN model for the two-class problem achieved a maximum accuracy of 98.26%, with a misclassification 
of 6 samples. Regression analysis for the two-class problem was performed at various stages of training, 
validation, and testing, as illustrated in Fig. 5 (Faraw 2015).  

 

 

Fig. 5: Regression analysis of two class pattern recognition using FFNN. 

 

The R values during these stages were found to be 0.99951, 0.96653, and 0.85693, respectively. These R values, 
being close to 1, confirm the robustness of the results (Faraw 2015, Judd et al. 2017). Additionally, Fig. 6 
displays a scattered plot revealing that the output neural network effectively discriminates between 0 and 1.  

 

Fig. 5: Regression analysis of two class pattern recognition using FFNN.

Level of Toxicity Using Multi-Layer Neural Network 

The ANN model for the two-class problem achieved a maximum accuracy of 98.26%, with a misclassification 
of 6 samples. Regression analysis for the two-class problem was performed at various stages of training, 
validation, and testing, as illustrated in Fig. 5 (Faraw 2015).  

 

 

Fig. 5: Regression analysis of two class pattern recognition using FFNN. 

 

The R values during these stages were found to be 0.99951, 0.96653, and 0.85693, respectively. These R values, 
being close to 1, confirm the robustness of the results (Faraw 2015, Judd et al. 2017). Additionally, Fig. 6 
displays a scattered plot revealing that the output neural network effectively discriminates between 0 and 1.  

 

Fig. 6: Scattered plot of two class patterns comparing the actual and target outputs.



14 Staphney Texina et al.

Vol. 24, No. 2, 2025 • Nature Environment and Pollution Technology  

out of 10 “low harm” samples, and 6 out of 7 “moderate 
harm” samples. Notably, one “low harm” sample was 
incorrectly categorized as “moderate harm,” resulting in a 
17% false negative rate. For the “severe harm” category, 
272 out of 275 samples were correctly classified, with a 1% 
false positive rate indicating two samples falling into “no 
harm” and one into “low harm.” This analysis justifies the 
MLNN model’s effectiveness in determining the toxicity 
level of fruits and vegetables, even with a dataset of 513 
samples (excluding 6 misclassified samples in the two-class  
problem).

From the confusion matrix represented in Table 11, it 
is observed that there are false negative samples and false 
positive samples. Therefore, the sensitivity and specificity 
of the multi-classification system have been analyzed using 
Equation 2 and Equation 3.

	 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃+𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁     …(2) 

𝑆𝑆 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁+𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃     …(3)  

	 …(2)

	

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃+𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁     …(2) 

𝑆𝑆 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁+𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃     …(3)  	 …(3)

The Sensitivity and specificity results are tabulated in 
Table 12 and discussed below.

An understanding of the effectiveness of the classification 
model for every class can be established from the sensitivity 

and specificity results derived from the confusion matrix. 
The results are discussed as follows:

Level of Sensitivity

The ability of a model to distinguish examples of a specific 
class from all instances that genuinely belong to that class 
is measured by its sensitivity. Therefore, the classification 
model based on the multi-layer neural network model with 
maximum classification accuracy has been chosen for the 
sensitivity and specificity analysis. From this analysis, 
considering the “No Harm” and “Moderate Harm” classes, 
Sensitivity stands at 100%, indicating that the model 
accurately detects every “No Harm” and “Moderate Harm” 
occurrence. Considering the “Low Harm” category, the 
model’s sensitivity is 90%, indicating that 90% of “Low 
Harm” occurrences are accurately identified, with minimal 
instances of misclassification. Similarly, the sensitivity 
of the “Severe harm” class was 99.26%, indicating high 
accuracy in identifying instances of “Severe harm”, with a 
few misclassifications. 

The level of specificity relates to how effectively the 
model can identify and reject samples that do not fall 
within a specific class. In this classification problem, 
every class has a specificity value of 100%, which strongly 

Table 11: Confusion matrix for MLNN for the four-class problem.

    Actual output TP FP

    No Harm Low harm Moderate harm Severe harm

Target 
Output

No Harm 222 0 0 0 100% 0%

Low harm 0 9 1 0 90% 10%

Moderate harm 0 0 6 0 100% 0%

Severe harm 2 1 0 272 99% 1%

False Negative 1% 10% 17% 0% 97% 3%

Table 12: The Sensitivity and specificity results.
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No Harm

Class Sensitivity = ��
�����

 Specificity = ��
�����

 

No Harm 222
222 + 0

= 1.00 (100%) 
9 +  1 +  0 +  1 +  0 +  6 +  0 +  272
9 +  1 +  0 +  1 +  0 +  6 +  0 +  272

=  
289
289

= 1.00 (100%) 

Low Harm 9
9 + 1

= 0.90 (90%) 
222 +  0 +  0 +  1 +  0 +  6 +  0 +  272
222 +  0 +  0 +  1 +  0 +  6 +  0 +  272

=  
500
500

= 1.00 (100%) 

Moderate Harm 6
6 + 0

= 1.00 (100%) 
222 +  0 +  0 +  0 +  0 +  1 +  0 +  1 +  272
222 +  0 +  0 +  0 +  0 +  1 +  0 +  1 +  272

=  
498
498

= 1.00 (100%) 

Severe Harm 272
272 + 2

= 0.99 (99.26%) 
222 +  0 +  0 +  0 +  9 +  1 +  0 +  6
222 +  0 +  0 +  0 +  9 +  1 +  0 +  6

 =  
238
238

= 1.00 (100%) 

 

An understanding of the effectiveness of the classification model for every class can be established from the 
sensitivity and specificity results derived from the confusion matrix. The results are discussed as follows: 

Level of Sensitivity 

The ability of a model to distinguish examples of a specific class from all instances that genuinely 
belong to that class is measured by its sensitivity. Therefore, the classification model based on the multi-layer 
neural network model with maximum classification accuracy has been chosen for the sensitivity and specificity 
analysis. From this analysis, considering the "No Harm" and "Moderate Harm" classes, Sensitivity stands at 
100%, indicating that the model accurately detects every "No Harm" and "Moderate Harm" occurrence. 
Considering the "Low Harm" category, the model's sensitivity is 90%, indicating that 90% of "Low Harm" 
occurrences are accurately identified, with minimal instances of misclassification. Similarly, the sensitivity of 
the "Severe harm" class was 99.26%, indicating high accuracy in identifying instances of "Severe harm", with 
a few misclassifications.  

The level of specificity relates to how effectively the model can identify and reject samples that do not 
fall within a specific class. In this classification problem, every class has a specificity value of 100%, which 
strongly suggests that samples that do not belong to each class were successfully rejected by the model. From 
this analysis, with high sensitivity and specificity values across all classes, the classification model appears to 
be effective at identifying samples of each class overall, according to the results of the sensitivity and specificity 
analysis. There is certainly potential for development, nevertheless, particularly in accurately recognizing cases 
of the "Low harm" class, where the sensitivity is marginally lower than that of other classes. Additional 
examination and enhancement of the model could potentially enhance its efficacy in terms of increased 
classification precision. 

Moreover, regression and scatter plots were used to assess the strength of the relationship between 
targeted outputs and the actual output. The regression plot and scatter plots are depicted in Fig. 7 and Fig. 8 for 
the four-class problem during the training, validation, and testing stages, respectively (Faraw 2015). The R 
values are 0.9919, 0.989, and 0.91, and these results further validate the robustness of the classification model. 
For future studies, increasing the sample size could enhance system stability and facilitate the generalization of 
the model for global applicability. 
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An understanding of the effectiveness of the classification model for every class can be established from the 
sensitivity and specificity results derived from the confusion matrix. The results are discussed as follows: 

Level of Sensitivity 

The ability of a model to distinguish examples of a specific class from all instances that genuinely 
belong to that class is measured by its sensitivity. Therefore, the classification model based on the multi-layer 
neural network model with maximum classification accuracy has been chosen for the sensitivity and specificity 
analysis. From this analysis, considering the "No Harm" and "Moderate Harm" classes, Sensitivity stands at 
100%, indicating that the model accurately detects every "No Harm" and "Moderate Harm" occurrence. 
Considering the "Low Harm" category, the model's sensitivity is 90%, indicating that 90% of "Low Harm" 
occurrences are accurately identified, with minimal instances of misclassification. Similarly, the sensitivity of 
the "Severe harm" class was 99.26%, indicating high accuracy in identifying instances of "Severe harm", with 
a few misclassifications.  

The level of specificity relates to how effectively the model can identify and reject samples that do not 
fall within a specific class. In this classification problem, every class has a specificity value of 100%, which 
strongly suggests that samples that do not belong to each class were successfully rejected by the model. From 
this analysis, with high sensitivity and specificity values across all classes, the classification model appears to 
be effective at identifying samples of each class overall, according to the results of the sensitivity and specificity 
analysis. There is certainly potential for development, nevertheless, particularly in accurately recognizing cases 
of the "Low harm" class, where the sensitivity is marginally lower than that of other classes. Additional 
examination and enhancement of the model could potentially enhance its efficacy in terms of increased 
classification precision. 

Moreover, regression and scatter plots were used to assess the strength of the relationship between 
targeted outputs and the actual output. The regression plot and scatter plots are depicted in Fig. 7 and Fig. 8 for 
the four-class problem during the training, validation, and testing stages, respectively (Faraw 2015). The R 
values are 0.9919, 0.989, and 0.91, and these results further validate the robustness of the classification model. 
For future studies, increasing the sample size could enhance system stability and facilitate the generalization of 
the model for global applicability. 
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An understanding of the effectiveness of the classification model for every class can be established from the 
sensitivity and specificity results derived from the confusion matrix. The results are discussed as follows: 

Level of Sensitivity 

The ability of a model to distinguish examples of a specific class from all instances that genuinely 
belong to that class is measured by its sensitivity. Therefore, the classification model based on the multi-layer 
neural network model with maximum classification accuracy has been chosen for the sensitivity and specificity 
analysis. From this analysis, considering the "No Harm" and "Moderate Harm" classes, Sensitivity stands at 
100%, indicating that the model accurately detects every "No Harm" and "Moderate Harm" occurrence. 
Considering the "Low Harm" category, the model's sensitivity is 90%, indicating that 90% of "Low Harm" 
occurrences are accurately identified, with minimal instances of misclassification. Similarly, the sensitivity of 
the "Severe harm" class was 99.26%, indicating high accuracy in identifying instances of "Severe harm", with 
a few misclassifications.  

The level of specificity relates to how effectively the model can identify and reject samples that do not 
fall within a specific class. In this classification problem, every class has a specificity value of 100%, which 
strongly suggests that samples that do not belong to each class were successfully rejected by the model. From 
this analysis, with high sensitivity and specificity values across all classes, the classification model appears to 
be effective at identifying samples of each class overall, according to the results of the sensitivity and specificity 
analysis. There is certainly potential for development, nevertheless, particularly in accurately recognizing cases 
of the "Low harm" class, where the sensitivity is marginally lower than that of other classes. Additional 
examination and enhancement of the model could potentially enhance its efficacy in terms of increased 
classification precision. 

Moreover, regression and scatter plots were used to assess the strength of the relationship between 
targeted outputs and the actual output. The regression plot and scatter plots are depicted in Fig. 7 and Fig. 8 for 
the four-class problem during the training, validation, and testing stages, respectively (Faraw 2015). The R 
values are 0.9919, 0.989, and 0.91, and these results further validate the robustness of the classification model. 
For future studies, increasing the sample size could enhance system stability and facilitate the generalization of 
the model for global applicability. 
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An understanding of the effectiveness of the classification model for every class can be established from the 
sensitivity and specificity results derived from the confusion matrix. The results are discussed as follows: 

Level of Sensitivity 

The ability of a model to distinguish examples of a specific class from all instances that genuinely 
belong to that class is measured by its sensitivity. Therefore, the classification model based on the multi-layer 
neural network model with maximum classification accuracy has been chosen for the sensitivity and specificity 
analysis. From this analysis, considering the "No Harm" and "Moderate Harm" classes, Sensitivity stands at 
100%, indicating that the model accurately detects every "No Harm" and "Moderate Harm" occurrence. 
Considering the "Low Harm" category, the model's sensitivity is 90%, indicating that 90% of "Low Harm" 
occurrences are accurately identified, with minimal instances of misclassification. Similarly, the sensitivity of 
the "Severe harm" class was 99.26%, indicating high accuracy in identifying instances of "Severe harm", with 
a few misclassifications.  

The level of specificity relates to how effectively the model can identify and reject samples that do not 
fall within a specific class. In this classification problem, every class has a specificity value of 100%, which 
strongly suggests that samples that do not belong to each class were successfully rejected by the model. From 
this analysis, with high sensitivity and specificity values across all classes, the classification model appears to 
be effective at identifying samples of each class overall, according to the results of the sensitivity and specificity 
analysis. There is certainly potential for development, nevertheless, particularly in accurately recognizing cases 
of the "Low harm" class, where the sensitivity is marginally lower than that of other classes. Additional 
examination and enhancement of the model could potentially enhance its efficacy in terms of increased 
classification precision. 

Moreover, regression and scatter plots were used to assess the strength of the relationship between 
targeted outputs and the actual output. The regression plot and scatter plots are depicted in Fig. 7 and Fig. 8 for 
the four-class problem during the training, validation, and testing stages, respectively (Faraw 2015). The R 
values are 0.9919, 0.989, and 0.91, and these results further validate the robustness of the classification model. 
For future studies, increasing the sample size could enhance system stability and facilitate the generalization of 
the model for global applicability. 
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An understanding of the effectiveness of the classification model for every class can be established from the 
sensitivity and specificity results derived from the confusion matrix. The results are discussed as follows: 

Level of Sensitivity 

The ability of a model to distinguish examples of a specific class from all instances that genuinely 
belong to that class is measured by its sensitivity. Therefore, the classification model based on the multi-layer 
neural network model with maximum classification accuracy has been chosen for the sensitivity and specificity 
analysis. From this analysis, considering the "No Harm" and "Moderate Harm" classes, Sensitivity stands at 
100%, indicating that the model accurately detects every "No Harm" and "Moderate Harm" occurrence. 
Considering the "Low Harm" category, the model's sensitivity is 90%, indicating that 90% of "Low Harm" 
occurrences are accurately identified, with minimal instances of misclassification. Similarly, the sensitivity of 
the "Severe harm" class was 99.26%, indicating high accuracy in identifying instances of "Severe harm", with 
a few misclassifications.  

The level of specificity relates to how effectively the model can identify and reject samples that do not 
fall within a specific class. In this classification problem, every class has a specificity value of 100%, which 
strongly suggests that samples that do not belong to each class were successfully rejected by the model. From 
this analysis, with high sensitivity and specificity values across all classes, the classification model appears to 
be effective at identifying samples of each class overall, according to the results of the sensitivity and specificity 
analysis. There is certainly potential for development, nevertheless, particularly in accurately recognizing cases 
of the "Low harm" class, where the sensitivity is marginally lower than that of other classes. Additional 
examination and enhancement of the model could potentially enhance its efficacy in terms of increased 
classification precision. 

Moreover, regression and scatter plots were used to assess the strength of the relationship between 
targeted outputs and the actual output. The regression plot and scatter plots are depicted in Fig. 7 and Fig. 8 for 
the four-class problem during the training, validation, and testing stages, respectively (Faraw 2015). The R 
values are 0.9919, 0.989, and 0.91, and these results further validate the robustness of the classification model. 
For future studies, increasing the sample size could enhance system stability and facilitate the generalization of 
the model for global applicability. 
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An understanding of the effectiveness of the classification model for every class can be established from the 
sensitivity and specificity results derived from the confusion matrix. The results are discussed as follows: 

Level of Sensitivity 

The ability of a model to distinguish examples of a specific class from all instances that genuinely 
belong to that class is measured by its sensitivity. Therefore, the classification model based on the multi-layer 
neural network model with maximum classification accuracy has been chosen for the sensitivity and specificity 
analysis. From this analysis, considering the "No Harm" and "Moderate Harm" classes, Sensitivity stands at 
100%, indicating that the model accurately detects every "No Harm" and "Moderate Harm" occurrence. 
Considering the "Low Harm" category, the model's sensitivity is 90%, indicating that 90% of "Low Harm" 
occurrences are accurately identified, with minimal instances of misclassification. Similarly, the sensitivity of 
the "Severe harm" class was 99.26%, indicating high accuracy in identifying instances of "Severe harm", with 
a few misclassifications.  

The level of specificity relates to how effectively the model can identify and reject samples that do not 
fall within a specific class. In this classification problem, every class has a specificity value of 100%, which 
strongly suggests that samples that do not belong to each class were successfully rejected by the model. From 
this analysis, with high sensitivity and specificity values across all classes, the classification model appears to 
be effective at identifying samples of each class overall, according to the results of the sensitivity and specificity 
analysis. There is certainly potential for development, nevertheless, particularly in accurately recognizing cases 
of the "Low harm" class, where the sensitivity is marginally lower than that of other classes. Additional 
examination and enhancement of the model could potentially enhance its efficacy in terms of increased 
classification precision. 

Moreover, regression and scatter plots were used to assess the strength of the relationship between 
targeted outputs and the actual output. The regression plot and scatter plots are depicted in Fig. 7 and Fig. 8 for 
the four-class problem during the training, validation, and testing stages, respectively (Faraw 2015). The R 
values are 0.9919, 0.989, and 0.91, and these results further validate the robustness of the classification model. 
For future studies, increasing the sample size could enhance system stability and facilitate the generalization of 
the model for global applicability. 
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An understanding of the effectiveness of the classification model for every class can be established from the 
sensitivity and specificity results derived from the confusion matrix. The results are discussed as follows: 

Level of Sensitivity 

The ability of a model to distinguish examples of a specific class from all instances that genuinely 
belong to that class is measured by its sensitivity. Therefore, the classification model based on the multi-layer 
neural network model with maximum classification accuracy has been chosen for the sensitivity and specificity 
analysis. From this analysis, considering the "No Harm" and "Moderate Harm" classes, Sensitivity stands at 
100%, indicating that the model accurately detects every "No Harm" and "Moderate Harm" occurrence. 
Considering the "Low Harm" category, the model's sensitivity is 90%, indicating that 90% of "Low Harm" 
occurrences are accurately identified, with minimal instances of misclassification. Similarly, the sensitivity of 
the "Severe harm" class was 99.26%, indicating high accuracy in identifying instances of "Severe harm", with 
a few misclassifications.  

The level of specificity relates to how effectively the model can identify and reject samples that do not 
fall within a specific class. In this classification problem, every class has a specificity value of 100%, which 
strongly suggests that samples that do not belong to each class were successfully rejected by the model. From 
this analysis, with high sensitivity and specificity values across all classes, the classification model appears to 
be effective at identifying samples of each class overall, according to the results of the sensitivity and specificity 
analysis. There is certainly potential for development, nevertheless, particularly in accurately recognizing cases 
of the "Low harm" class, where the sensitivity is marginally lower than that of other classes. Additional 
examination and enhancement of the model could potentially enhance its efficacy in terms of increased 
classification precision. 

Moreover, regression and scatter plots were used to assess the strength of the relationship between 
targeted outputs and the actual output. The regression plot and scatter plots are depicted in Fig. 7 and Fig. 8 for 
the four-class problem during the training, validation, and testing stages, respectively (Faraw 2015). The R 
values are 0.9919, 0.989, and 0.91, and these results further validate the robustness of the classification model. 
For future studies, increasing the sample size could enhance system stability and facilitate the generalization of 
the model for global applicability. 
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An understanding of the effectiveness of the classification model for every class can be established from the 
sensitivity and specificity results derived from the confusion matrix. The results are discussed as follows: 

Level of Sensitivity 

The ability of a model to distinguish examples of a specific class from all instances that genuinely 
belong to that class is measured by its sensitivity. Therefore, the classification model based on the multi-layer 
neural network model with maximum classification accuracy has been chosen for the sensitivity and specificity 
analysis. From this analysis, considering the "No Harm" and "Moderate Harm" classes, Sensitivity stands at 
100%, indicating that the model accurately detects every "No Harm" and "Moderate Harm" occurrence. 
Considering the "Low Harm" category, the model's sensitivity is 90%, indicating that 90% of "Low Harm" 
occurrences are accurately identified, with minimal instances of misclassification. Similarly, the sensitivity of 
the "Severe harm" class was 99.26%, indicating high accuracy in identifying instances of "Severe harm", with 
a few misclassifications.  

The level of specificity relates to how effectively the model can identify and reject samples that do not 
fall within a specific class. In this classification problem, every class has a specificity value of 100%, which 
strongly suggests that samples that do not belong to each class were successfully rejected by the model. From 
this analysis, with high sensitivity and specificity values across all classes, the classification model appears to 
be effective at identifying samples of each class overall, according to the results of the sensitivity and specificity 
analysis. There is certainly potential for development, nevertheless, particularly in accurately recognizing cases 
of the "Low harm" class, where the sensitivity is marginally lower than that of other classes. Additional 
examination and enhancement of the model could potentially enhance its efficacy in terms of increased 
classification precision. 

Moreover, regression and scatter plots were used to assess the strength of the relationship between 
targeted outputs and the actual output. The regression plot and scatter plots are depicted in Fig. 7 and Fig. 8 for 
the four-class problem during the training, validation, and testing stages, respectively (Faraw 2015). The R 
values are 0.9919, 0.989, and 0.91, and these results further validate the robustness of the classification model. 
For future studies, increasing the sample size could enhance system stability and facilitate the generalization of 
the model for global applicability. 
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suggests that samples that do not belong to each class were 
successfully rejected by the model. From this analysis, with 
high sensitivity and specificity values across all classes, the 
classification model appears to be effective at identifying 
samples of each class overall, according to the results of 
the sensitivity and specificity analysis. There is certainly 
potential for development, nevertheless, particularly in 
accurately recognizing cases of the “Low harm” class, where 

the sensitivity is marginally lower than that of other classes. 
Additional examination and enhancement of the model 
could potentially enhance its efficacy in terms of increased 
classification precision.

Moreover, regression and scatter plots were used to 
assess the strength of the relationship between targeted 
outputs and the actual output. The regression plot and scatter 
plots are depicted in Fig. 7 and Fig. 8 for the four-class 

 

Fig. 7: Regression analysis of multi-class pattern recognition using MLNN. 

 

 

Fig. 8: Scattered plot of four class patterns comparing the actual and target outputs. 

 

CONCLUSIONS 

This study thoroughly investigated the presence of Polycyclic Aromatic Hydrocarbons (PAHs) in fruits and 
vegetables, employing robust statistical measures for a comprehensive understanding of the dataset. The 
detection of toxicity in these consumables was successfully achieved through the implementation of machine 
learning algorithms, including Artificial Neural Network (ANN), k-nearest Neighbors (K-NN), and Support 
Vector Machine (SVM). Remarkably, the medium k-NN and Cubic-k-NN models demonstrated 100% 
accuracy, while Quadratic SVM, Cubic SVM, and cosine k-NN models exhibited an accuracy of 92.3%. Despite 
the promising results from all three models, ANN classifiers emerged as the most accurate in predictions, 
especially given the binary class nature of the problem and the minimal number of samples considered for the 
toxicity detection system. 
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problem during the training, validation, and testing stages, 
respectively (Faraw 2015). The R values are 0.9919, 0.989, 
and 0.91, and these results further validate the robustness of 
the classification model. For future studies, increasing the 
sample size could enhance system stability and facilitate the 
generalization of the model for global applicability.

CONCLUSIONS

This study thoroughly investigated the presence of Polycyclic 
Aromatic Hydrocarbons (PAHs) in fruits and vegetables, 
employing robust statistical measures for a comprehensive 
understanding of the dataset. The detection of toxicity in 
these consumables was successfully achieved through the 
implementation of machine learning algorithms, including 
Artificial Neural Network (ANN), k-nearest Neighbors (K-
NN), and Support Vector Machine (SVM). Remarkably, the 
medium k-NN and Cubic-k-NN models demonstrated 100% 
accuracy, while Quadratic SVM, Cubic SVM, and cosine 
k-NN models exhibited an accuracy of 92.3%. Despite the 
promising results from all three models, ANN classifiers 
emerged as the most accurate in predictions, especially given 
the binary class nature of the problem and the minimal number 
of samples considered for the toxicity detection system.

Furthermore, the outputs from the ANN models 
were investigated to determine the toxicity level of the 
samples, revealing highly promising results. To enhance 
the generalization of this toxicity classification system, 
future work will involve developing a real-time dataset with 
diverse feature extraction and optimization methods. The 
models trained using various machine learning algorithms 
showcased efficiency and provided substantial results, 
laying the groundwork for the development of a generalized 
prototype model. Standardizing the level of toxicity will 
enable a more precise representation of the severity of fruits 
and vegetables. The results of this study establish the viability 
of applying machine learning algorithms to predict toxicity 
in various products, paving the way for broader applications 
in the future. Also, the performance of the models trained 
using different machine learning algorithms provides a 
solid foundation for the development of a standardized 
toxicity classification system. This standardization facilitates 
to provision of precise decisions on toxicity severity in 
products, thereby enabling informed decision-making and 
regulatory intervention. 

Finally, the study has several limitations, such as those 
associated with the collected dataset. While the dataset 
used in this research presents samples from a variety of 
regions, seasons, and sources, it may not accurately reflect 
the global diversity of fruits and vegetables. This constraint 
may affect the generalizability of our classification models. 

Expanding the methodology to include samples from 
different countries considering the climates and farming 
practices might strengthen the analysis. Collaboration with 
research institutions and industries may allow practical 
implementation of the research, and it would also be 
beneficial to investigate longitudinal studies examining PAH 
contamination over multiple periods and seasons. This would 
provide a more complete understanding of temporal changes 
and their impact on contamination levels.

Furthermore, establishing the study’s limitations is 
crucial for interpreting the findings and directing future 
research. By addressing potential overfitting, the need for 
more diverse datasets, and other constraints, future work on 
this study will focus on expanding datasets, incorporating 
longitudinal data, and leveraging advanced detection 
technologies and evaluation methods. This may enhance 
the reliability and stability of the classification models and 
the applicability of PAH analysis in fruits and vegetables.

In summary, our research not only highlights the current 
state of PAH contamination in fruits and vegetables but also 
opens the direction for future research and technological 
applications that can significantly enhance food safety and 
public health. Addressing these challenges and suggesting 
concrete solutions contribute to safer and healthier food safety.
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