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ABSTRACT

Continuous wavelet analysis (CWA) has been applied to leaf-scale spectral data for quantifying leaf 
chlorophyll content, but its application to canopy-scale spectral data for estimating the canopy chlorophyll 
density (CCD) of winter wheat at different growth stages requires further analysis. This study aims to 
estimate CCD by applying CWA to the canopy spectra of 185 samples from Guanzhong Plain, China. The 
five most informative wavelet features related to CCD were identified using the CWA method. Meanwhile, 
10 commonly used spectral indices were selected to compare with the CWA method. Two partial least 
square regression (PLSR) models based on wavelet features and spectral indices were developed and 
compared. Results showed that the PLSR model using wavelet features (R2 = 0.64, RMSE = 0.43 g/m2) 
was better than that using spectral indices (R2 = 0.57, RMSE = 0.48 g/m2) and wavelet features were 
less sensitive to the growth stage variation than spectral indices. This result suggested that the CWA 
approach can derive robust wavelet features and was more effective than spectral indices for predicting 
CCD from canopy-scale spectral data for an agricultural ecosystem.  

INTRODUCTION

Accurate quantitative estimates of key biophysical variables 
are crucial for land surface models that quantify the exchange 
of energy and matter between the land surface and lower 
atmosphere (Houborg et al. 2008). Key biophysical variables 
include the canopy chlorophyll density (CCD), which is de-
fined as the total amount of foliage pigment per unit ground 
area, that assists in determining photosynthetic capacity 
and predicting productivity (Nijs et al.1995). Therefore, an 
accurate monitor of CCD is significant for precise agriculture 
fertilization, which can effectively avoid the gradual decline 
of ecological environment caused by the excessive inputs of 
chemical fertilizer.

Remote sensing techniques for estimating vegetation 
biophysical variables have been based on either the em-
pirical statistical approach that relates canopy variables to 
single spectral reflectance or vegetation indices (VIs) or the 
inversion of a physically based model (Boegh et al. 2002, 
Houborg et al. 2008). The VI approach is highly preferred for 
large-scale remote sensing applications due to its simplicity. 
Previous studies have shown that reflectance in the green, red, 
red edge, and near-infrared spectral regions is sensitive to a 
wide range of chlorophyll content in leaves and canopies (Co-
lombo et al. 2003). VIs based on these spectral regions have 
been used successfully (Gitelson et al. 2005). However, the 

spectral index approach has apparent limitations. On the one 
hand, spectral indices use only two or three wavebands, not 
the entire spectral information provided from a reflectance 
curve. On the other hand, spectral reflectance relationships 
are site-, time-, and crop-specific, making the use of a single 
relationship for an entire region unfeasible (Houborg et al. 
2008, Buschmann et al. 1993). The physically based model 
describes the transfer and interaction of radiation inside the 
canopy on the basis of physical laws and thus provides an 
explicit connection between the biophysical variables and 
canopy reflectance. However, this method is computation-
ally intensive and complex and has an ill-posed nature of 
model inversion (Gitelson et al. 1996), thereby limiting its 
widespread practical use. 

Continuous wavelet analysis (CWA) can decompose 
reflectance spectra into a number of scale components and 
permits the extraction of wavelet features that capture useful 
spectral information pertinent to quantifying forest biophys-
ical parameters, leaf water content, and leaf chlorophyll 
content (Gitelson et al. 1996, Daughtry et al. 2000, Dash et 
al. 2004). However, previous research is limited by applying 
CWA to leaf reflectance spectra measured in laboratories 
and simulated with radiative transfer models (Daughtry et 
al. 2000, Atzberger 2004). Meanwhile, the efficiency of the 
CWA approach in estimating the CCD of winter wheat at 
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different growth stages from the canopy spectra still requires 
further study. The canopy spectra are more complex than the 
leaf spectra due to a number of complicating factors, such 
as soil background and canopy structural variation (Broge 
et al. 2002), which make CCD retrieval challenging. In ad-
dition, although several studies have established models for 
estimating CCD, most of them have focused on using single 
growth stage data and have not validated the sensitivity of 
their methods to the growth stage variation in canopy spectra, 
thereby limiting the widespread application of their methods.

The present study aims to investigate the spectroscopic 
estimation of CCD by applying the CWA method to the can-
opy spectra of 185 winter wheat samples from two growth 
stages. We apply two partial least square regression (PLSR) 
models based on the most informative wavelet features and 
optimal spectral indices to validate the sensitivity to the 
growth stage variation of winter wheat in CCD compared 
with field measurements. Specifically, the objectives of this 
study are as follows: (1) to select the spectral region that is 
sensitive to chlorophyll content and (2) to propose a strategy 
for improving the estimation accuracy of chlorophyll content.

DATA COLLECTION

Study Area

The three core experiment sites, namely, Juliang, Xinglin, 
and Rougu, are located in the Guanzhong Plain of Shanxi 
Province, China. They cover areas of 2.33, 6.67, and 2.00 
km2, respectively. The altitude ranges from 325 m to 800 
m. The area has a monsoon climate with a hot summer and 
cool winter. The mean annual temperature is 12.9°C, and the 
mean annual precipitation is 635.1 mm with marked seasonal 
variations. Winter wheat is the main crop type in the area, 
and the main soil types are loam, clay loam, and medium. 
The entire growth period of winter wheat is 225 days.

    Two field measurements were conducted at the growth 
cycle of winter wheat in 2013: one in the jointing stage (from 
March 31 to April 1 of 2013) and the other in the grain filling 
stage (from May 27 to May 28 of 2013). Sample sites were 
selected where soil and canopy conditions were fairly ho-
mogeneous in surrounding areas on scales of tens of meters 
and where the vegetation appeared healthy and capable of 
surviving through the experiment. The coordinate of each site 
was recorded with a differential GPS (Trimble 332, USA).

Canopy Hyperspectral Measurements

Canopy spectra were measured using an ASD FieldSpec 
FR spectroradiometer (ASD, Boulder, USA) ranging 350-
2500 nm between 10:00 a.m. and 14:00 p.m. in local time 

(GMT+8), when the sky was slightly cloudy or had no cloud. 
Care was taken to avoid measuring the canopy spectra while 
the clouds were passing overhead. The detector was posi-
tioned vertically downward from a height of 50 cm upon 
the canopy. Before the canopy spectra were collected, the 
instrument was optimized and calibrated with a white panel 
(99% reflectance). To reduce instrument noise effect on the 
spectrum measurement, canopy spectra were measured 10 
times at each point, and the average values were used as the 
last results. To eliminate noise effects in the data, the reflec-
tance data were smoothed using a weighted mean moving 
average over a 5 nm sample. This method provided sufficient 
smoothing to the reflectance data without loss of fine spec-
tral detail information (Liao et al. 2013). Due to the strong 
absorption effect of vapor and carbon dioxide, 350-950 nm 
was selected as effective data for the subsequent analysis.

Measurement of Pigments and Leaf Area Index (LAI)

A portable SPAD-502 chlorophyll meter (Minolta, Spain) 
was used for the nondestructive measurements of leaf chlo-
rophyll content. At each plot, the first and second leaves from 
the top of the wheat were measured 10 times each, and the 
average values were calculated as the final SPAD. However, 
to use the unit-less SPAD values for validating field-based 
leaf chlorophyll estimates, the SPAD value must be converted 
to leaf chlorophyll content. Previous research has shown 
that the determination of leaf chlorophyll content from the 
same SPAD-502 meter appears to be independent of species, 
which was theoretically justified by Markwell (Baret et al. 
1991). Thus, we used the exponential equation developed 
by Markwell to convert SPAD-502 field measurements into 
leaf chlorophyll content (mg/cm2):

	 C SPAD

RMSD g cm

ab = ◊ ◊( )
- =( )
6 34299 0 04379

6 10629 5 4 2

. exp .

. . m
	 …(1)

Here Cab 
is the leaf chlorophyll content.

 
LAI, which scales 

the leaf chlorophyll content from leaf to canopy levels, was 
measured using LAI-2000 Plant Canopy Analyzer (LI-COR, 
USA). The analyzer compares the light levels above and be-
low the canopy, which were detected in five conical rings, to 
infer the LAI and characteristics of the canopy architecture 
(Jacquemoud et al. 2000). LAI-2000 was programmed to 
average four observations into a single value by using one 
measurement obtained above the canopy and four beneath 
the canopy: in the row, 1/4, 1/2, and 3/4 of the way across 
the row. This approach provided a good spatial average for 
row crops of partial cover. Then, the CCD was determined as

	 CCD C LAIab= ◊ 	 …(2)



1213RETRIEVAL OF CANOPY CHLOROPHYLL DENSITY OF WINTER WHEAT

Nature Environment and Pollution Technology • Vol. 18, No. 4, 2019

Here, the unit of CCD is g/m2. We eventually acquired the 
CCD data of two complete growth stages for 77 samples in 
the jointing stage and 108 samples in the grain filling stage.

RESEARCH METHODOLOGY

Continuous Wavelet Transform (CWT)

Wavelet transform is a powerful signal processing tool that 
has been successfully used in remote sensing image process-
ing to extract information from various scales (Simhadri et 
al. 1998); it includes two variations: discrete wavelet trans-
form (DWT) and CWT (Dash et al. 2004). The CWT can 
decompose a signal at a continuum of positions, and CWT 
outputs can be easily interpreted. In this study, we used CWT 
to extract spectral information for CCD estimation.

The CWT is a linear operation that uses a mother wavelet 
function to convert a hyperspectral reflectance spectrum into 
sets of coefficients (Cheng et al.,2012). The main equation 
of wavelet transformation is as follows:

	 y l y
l

a b
a

b

a, ( ) =
-Ê

ËÁ
ˆ
¯̃

1
	 …(3)

Here a and b are positive numbers. a
 
represents the 

scaling factor defining the width of the wavelet and b is the 

shifting factor determining the position. The CWT output is 
given by (Cheng et al. 2014).

	 W a b f f df , ,( ) = = ( ) ( )
-•

+•

Úy l y l la,b a,b 	 …(4)

Here f(l)(l=1,2,…, n, n is the number of spectral 
bands and herein n = 601) is the reflectance spectrum. 

W a b i m j nf i j, ( , , , , , , , )( ) = =1 2 1 2� �  represents  the 
CWT coefficients. The CWT coefficients constitute a 2D 
scalogram, in which one dimension is scale and the other is 
wavelength. Previous research has reported that the shape of 
the absorption features of vegetation is similar to a Gaussian 
or quasi-Gaussian function (Combal et al. 2002). Therefore, 
the second derivative of Gaussian, also known as the Mexican 
hat, has been used as the mother wavelet basis (Broge et al. 
2002, Combal et al. 2002). In the present study, the canopy 
spectra ranged from 350 nm to 950 nm, and 601 bands were 
available. Any scale greater than 29 = 512 was discarded be-
cause decomposed components at high scales did not carry 
meaningful spectral information. All CWT operations were 
performed using Matlab 2010a (Natick, MA, USA).

Wavelet Feature Selection

A squared correlation coefficient (R2) was calculated by the 
Pearson’s linear correlations between elements of wavelet 

Table 1: Spectral indices for predicting canopy chlorophyll density.

Spectral index Acronym Formula Literature

Modified chlorophyll absorption reflectance index MCARI R R R R R R700 670 700 550 700 6700 2-( ) - -( )ÈÎ ˘̊ ( ). Daughtry et al.,2000

Simple ratio SR RNIR/RRed Baret et al.,1991

Transformed chlorophyll absorption in reflectance index TCARI 3 0 2700 670 700 550
700

670

R R R R
R

R
-( ) - -( )È

Î
Í

˘

˚
˙. Haboudane et al.,2002

Structure insensitive pigment index SIPI R R R R800 445 800 680-( ) -( ) Peñuelas et al.,1999

Chlorophyll index using green reflectance CHLgreen

R

R
760 800

540 560

1-

-
- Gitelson et al.,2006

Chlorophyll index using red edge reflectance CHLred edge

R

R
760 800

540 560

1-

-
- Gitelson et al.,2006

Modified normalized difference mND705 R R R R R750 705 750 705 4452-( ) + -( ) Sims et al.,2002

Normalized difference vegetation index NDVI R R R RNIR d NIR d-( ) +( )Re Re Rouse et al.,1973

Normalized pigment chlorophyll ratio index NPCI R R R R680 430 680 430-( ) +( ) Riedell et al.,1999

Photochemical reflectance index PRI R R R R531 570 531 570-( ) +( ) Gamon et al.,1997
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power and CCD of all spectrum samples to identify features 
that are sensitive to variations in CCD. The most informative 
features for CCD were obtained by (1) retaining features where 
the correlations were statistically significant (P Value<0.0001) 
and (2) ranking these features in descending order on the basis 
of the R2

 values; a threshold was applied to delineate the top 
1% features that mostly strongly correlated with CCD (Gitel-
son et al. 1996, Daughtry et al. 2000, Broge et al. 2002). These 
features formed several scattered feature regions. The feature 
with the maximum R2

 within each region was determined and 
expressed as (wavelength in nm, scale). Eventually, a small 
number of sparsely distributed features were selected as the 
optimal wavelet features related to changes in CCD.

Calculation of Spectral Indices

Several spectral indices specifically designed to quantify chlo-
rophyll concentration were calculated (Table 1). These spectral 
indices were derived from previous studies that tested various 
species, leaf structures, developmental stages, and spectral 
indices (Gitelson et al. 2005, Blackburn et al. 2008, Ullah et al. 
2012, Asner et al. 2008, Ollinger 2011). Broad-band spectral 
indices, such as SR and NDVI, were included because of their 
frequent use in monitoring vegetation status (Wu et al. 2014). 
The broad-band reflectance spectra of Landsat-5 TM were 
adopted as the standard for integrating original hyperspectral 
reflectance. In addition to the above-mentioned spectral in-
dices, the other hyperspectral indices were calculated on the 
basis of the wavelengths given in the formulas.

Here, Rl is the reflectance at wavelength l.

RESULTS AND ANALYSIS

Growth stage variation in CCD and canopy reflectance 
properties

The CCD and canopy reflectance properties change as growth 
stages vary. Table 2 shows the descriptive statistics of CCD 
at two growth stages. The ranges of CCD are 0.46-3.81  
g/m2

 and 0.92-4.26 g/m2
 for jointing and grain filling stages, 

respectively. The coefficient of variation of CCD in the joint-
ing stage (32%) is higher than that in the grain filling stage 
(25%). At the two stages, the range of CCD is 0.46-4.26 g/m2

 
and the coefficient of variation is 30%. This finding indicates 
that CCD varies widely along the two growth stages. Fig. 
1 shows the average reflectance spectra from the jointing 
stage to the grain filling stage. Notably, the reflectance in 
the visible (350-713 nm) regions increases and decreases in 
the NIR (713-950 nm) regions.

 
Fig. 1: Mean reflectance spectra at the jointing and grain filling stages. 

Correlation of spectral indices with canopy chlorophyll density 
A correlation analysis was conducted between the 10 spectral indices from Table 1 and canopy 
chlorophyll density. Table 3 summarizes the results of the correlation analysis. Seven optimal 

spectral indices, namely, SR , NDVI , NPCI , PRI , 705mND , edgeredCHL and SIPI ,have a significant relationship 

with canopy chlorophyll density (P Value<0.0001). By contrast,TCARI , MCARI  and greenCHL  show 

low correlation with CCD. 
Table 3: Coefficient of determination between spectral indices and CCD (N=93). 

Spectral indices R  2R  P Value Spectral indices R  2R  P Value 

SR  0.365 0.134 0.000 705mND  0.579 0.336 0.000 

NDVI  0.533 0.284 0.000 MCARI  0.273 0.074 0.008 

TCARI  0.053 0.003 0.612 greenCHL  0.059 0.003 0.574 

NPCI  0.53 0.281 0.000 edgeredCHL  0.57 0.325 0.000 

PRI  0.598 0.357 0.000 SIPI  0.503 0.253 0.000 

Wavelet features from CWA 
Five most informative wavelet feature ranges, namely, 512-515 nm, 728-732 nm, 790-804 nm, 
834-836 nm, and 892-902 nm, are determined in each scale after spectral data are processed by 
CWA. Features with the maximum 2R  within each region, namely, (513 nm, scale 5), (730 nm, 
scale 6), (800 nm, scale 4), (835 nm, scale 3), and (897 nm, scale 4), are determined in the visible 
and near infrared regions. They are highly sensitive to CCD (P Value<0.0001) with 2R  values for 
the linear regression ranging from 0.39 to 0.47 (Table 4). Low-scale features (835 nm, scale 3), 
(800 nm, scale 4), and (897 nm, scale 4) capture narrow absorption features in the near infrared 
region that are influenced by pigment concentration (Gitelson et al. 2005). Feature (513 nm, scale 
5) occurs on the left shoulder of the green peak and captures spectral variation in the green range. 
High-scale feature (730 nm, scale 6) captures broad absorption features that occur in the range of 
red edge absorptions (Gitelson et al. 2005, Gitelson et al. 1996, Houborg et al. 2007). The 2R  and 
p values show that the five informative wavelet features perform better than the spectral indices in 
estimating CCD. 
Table 4: Correlations between CCD and most informative wavelet features derived from the calibration set (N=93) 

Fig. 1: Mean reflectance spectra at the jointing and grain filling stages.

Correlation of Spectral Indices with Canopy 
Chlorophyll Density

A correlation analysis was conducted between the 10 spectral 
indices from Table 1 and canopy chlorophyll density. Table 

Table 3: Coefficient of determination between spectral indices and CCD (N=93).

Spectral indices R R2 P Value Spectral indices R R2 P Value

SR 0.365 0.134 0.000 mND705 0.579 0.336 0.000

NDVI 0.533 0.284 0.000 MCARI 0.273 0.074 0.008

TCARI 0.053 0.003 0.612 CHLgreen 0.059 0.003 0.574

NPCI 0.53 0.281 0.000 CHLred edge 0.57 0.325 0.000

PRI 0.598 0.357 0.000 SIPI 0.503 0.253 0.000

Table 2: Descriptive statistics of CCD (g/m2) at two growth stages of 2013.

Growth period Number of plots Mean ± s.d. Min Max Coefficient of variation

Jointing stage 77 2.14±0.68 0.46 3.81 0.32

Grain filling stage 108 2.72±0.68 0.92 4.26 0.25

Two growth stages 185 2.48±0.74 0.46 4.26 0.30
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3 summarizes the results of the correlation analysis. Seven 
optimal spectral indices, namely, SR, NDVI, NCPI, PRI, 
mND705, CHLred green 

and SIPI, have a significant relation-
ship with canopy chlorophyll density (P Value<0.0001). By 
contrast, TCARI, MCARI and CHLgreen show low correlation 
with CCD.

Wavelet Features from CWA

Five most informative wavelet feature ranges, namely, 512-
515 nm, 728-732 nm, 790-804 nm, 834-836 nm, and 892-
902 nm, are determined in each scale after spectral data are 
processed by CWA. Features with the maximum R2 within 
each region, namely, (513 nm, scale 5), (730 nm, scale 6), 
(800 nm, scale 4), (835 nm, scale 3), and (897 nm, scale 
4), are determined in the visible and near infrared regions. 
They are highly sensitive to CCD (P Value<0.0001) with R2  
values for the linear regression ranging from 0.39 to 0.47 
(Table 4). Low-scale features (835 nm, scale 3), (800 nm, 
scale 4), and (897 nm, scale 4) capture narrow absorption 
features in the near infrared region that are influenced by 
pigment concentration (Gitelson et al. 2005). Feature (513 
nm, scale 5) occurs on the left shoulder of the green peak 
and captures spectral variation in the green range. High-scale 
feature (730 nm, scale 6) captures broad absorption features 
that occur in the range of red edge absorptions (Gitelson et 
al. 2005, Gitelson et al. 1996, Houborg et al. 2007). The R2  
and p values show that the five informative wavelet features 
perform better than the spectral indices in estimating CCD.

Regression model and validation of CCD using wavelet 
features and spectral indices

The PLSR model 1 was constructed with the five most 

informative wavelet features, while the PLSR model 2 was 
established with the seven optimal spectral indices of signif-
icant correlation with CCD. Table 5 summarizes the results 
of the two PLSR models for the whole validation dataset and 
the dataset partitioned by growth stage. In the two growth 
stages, the PLSR model 1 (R2 = 0.64, RMSE=0.43 g/m2, 
NRMSE=23.6%) is better than the PLSR model 2 (R2= 0.57, 
RMSE=0.48 g/m2, NRMSE=25.8%) in estimating CCD. 
After the validation data are partitioned by growth stage, 
the prediction accuracy of the two PLSR models exhibits 
low R2 values and high NRMSE values. The PLSR model 1 
has R2 =0.58 and NRMSE=28.2% for the jointing stage and 
R2 = 0.61 and NRMSE=24.6% for the grain filling stage. 
The PLSR model 2 has R2 =0.52 and NRMSE=32.3% for 
the jointing stage and R2

 =0.59 and NRMSE=25.2% for the 
grain filling stage. The two PLSR models exhibit highly 
contrasting predictive capabilities in the growth stage and 
always have substantially better performance in the grain 
filling stage than in the jointing stage. This result is partly 
due to that winter wheat is in the rapid growth phase at the 
jointing stage. The signals are more easily contaminated by 
the background with the lower LAI in the jointing stage than 
in the grain filling stage, and the coefficient of variation of 
CCD in the jointing stage (32%) is also higher than that in 
the grain filling stage (25%). Therefore, the CWA method 
can remove the effects of background spectral variation when 
quantifying concentrations of components from mixtures 
(Mittermayr et al. 2001). This capability can be due to that 
the prediction accuracy of the PLSR model 1 is better than 
that of the PLSR model 2 in the jointing stage. Therefore, 
wavelet features are more robust than spectral indices. Fig. 
2 plots the measured CCD against the estimated CCD for 

Table 4: Correlations between CCD and most informative wavelet features derived from the calibration set (N=93)

Spectral metrics
Feature location

R R2 P Value
Wavelength (nm) Scale

WP513, 5 513 5 0.68 0.46 0.000

WP730, 6 730 6 0.63 0.39 0.000

WP800, 4 800 4 0.64 0.40 0.000

WP835, 3 835 3 0.68 0.47 0.000

WP897, 4 897 4 0.67 0.44 0.000

Table 5: Results of PLSR models based on wavelet features and spectral indices for the whole validation dataset and the dataset partitioned by growth stage.

Spectral metrics
Two stages Jointing stage Grain filling stage

R2 RMSE NRMSE R2 RMSE NRMSE R2 RMSE NRMSE

Wavelet features 0.64 0.43 23.6% 0.58 0.50 28.2% 0.61 0.39 24.6%

Spectral indices 0.57 0.48 25.8% 0.52 0.58 32.3% 0.59 0.40 25.2%
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Fig.2: Plots of measured versus estimated CCD at the whole validation dataset (A and D), jointing stage (B and E), 

and grain filling stage (C and F) using PLSR model 1 (A, B, and C) and PLSR model 2 (D, E, and F). The 

predicted R2, RMSE, and NRMSE values shown are obtained from the validation dataset. 

Discussion and Conclusion  
This study presents the application of CWA method to canopy spectra for estimating CCD of 
winter wheat at two different growth stages. The CWA approach can effectively capture the 
meaningful spectral information that relates to CCD after the reflectance spectra are decomposed 

Fig.2: Plots of measured versus estimated CCD at the whole validation dataset (A and D), jointing stage (B and E), and grain filling stage (C and F) 
using PLSR model 1 (A, B, and C) and PLSR model 2 (D, E, and F). The predicted R2, RMSE, and NRMSE values shown are obtained from the 

validation dataset.
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illustrating the comparison of results and making them con-
vincing. Ideally, the 1:1 line should be a perfect match. The 
figure indicates that the PLSR model 1 has points that are 
more convergent to the line 1:1 than the PLSR model 2 for 
the whole validation dataset and the dataset partitioned by 
growth stage. This condition indicates that the relationships 
between reflectance measures and CCD have been improved 
by the CWA method. Therefore, the CWA method can derive 
more robust wavelet features than the spectral indices for 
estimating CCD of winter wheat across different growth 
stages from the canopy spectra.

DISCUSSION AND CONCLUSION 

This study presents the application of CWA method to canopy 
spectra for estimating CCD of winter wheat at two different 
growth stages. The CWA approach can effectively capture the 
meaningful spectral information that relates to CCD after the 
reflectance spectra are decomposed into various scales. Five 
most informative wavelet features, namely, (513 nm, scale 5), 
(730 nm, scale 6), (800 nm, scale 4), (835 nm, scale 3), and 
(897 nm, scale 4), are identified in the visible and near infra-
red regions. They are highly sensitive to CCD. Meanwhile, 
seven optimal spectral indices, namely, SR, NDVI, NPCI, 
PRI, mND705, CHLred edge 

and SIPI significantly correlate 
with CCD. They are used for further analysis. The PLSR 
model with the five wavelet features produces promising 
accuracy in estimating CCD. Specifically, the model has R2 

of 0.64, RMSE of 0.43 g / m2, and NRMSE of 23.6%. Mean-
while, the PLSR model with seven optimal spectral indices 
produces less prediction accuracy of CCD. In particular, it 
has R2 of 0.57, RMSE of 0.48 g / m2, and NRMSE of 25.8%. 
After the validation dataset is partitioned into jointing and 
grain filling stages, the prediction accuracy of the two PLSR 
models exhibits low R2 

 values and high NRMSE values. 
However, the PLSR model based on wavelet features still 
outperforms the model based on optimal spectral indices. 
Therefore, wavelet features are more effective than spectral 
indices in predicting CCD of winter wheat at different growth 
stages from canopy spectra for an agricultural ecosystem.

Our study extends the continuous wavelet analysis meth-
odology to estimate chlorophyll content from leaf scale to 
canopy scale and exhibits promising results. However, win-
ter wheat is the main crop in the study area. Thus, we only 
use winter wheat in this research. The capability of CWA 
in estimating CCD should be tested in the future using an 
extensive dataset with different crop species or at field scale 
with onboard hyperspectral images.
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