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ABSTRACT
The joint toxicity of heavy metals (Ni2+, Co2+, Cr3+, Pb2+) and trends in toxicity were analysed by multiple
linear regression and back propagation-artificial neural network models, using photobacteria as an
indication organism in factorial experiments. The joint toxicity of Ni2+, Co2+, Cr3+ and Pb2+ mainly occurs
through multiple interactions. Interactions between Ni2+, Co2+ and Cr3+ weaken the single toxicity and
binary interaction of Pb2+. Binary or quaternary heavy metal mixtures exert mainly antagonistic effects,
while ternary interactions are mainly synergistic. Increased concentrations of Pb2+, Cr3+ and Ni2+

corresponded with increased toxicity of the mixed system, but Co2+ showed the opposite trend. The
toxic effects of the mixed system were greatest with high Cr3+ concentration, while Pb2+ exerted the
smallest effect.
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INTRODUCTION

Heavy metals in the environment show high stability and
slow degradation, and are cumulative and toxic. They can
directly affect the human body through drinking water and
domestic water, and can be absorbed by aquatic animals and
plants, thereby entering the food chain and endangering hu-
mans and animals. Heavy metal pollution has become one of
the major environmental problems throughout the world (Luo
et al. 2011, Zhang et al. 2008). Pollutants in the environment
do not appear singly and usually occur as mixtures, such that
toxic effects in organisms can be complex. Köneman (1981)
found that in some mixtures, even though the level of a sin-
gle toxic pollutant is low, the joint toxicity may be signifi-
cant. Some studies have examined the joint toxicity of heavy
metals in China and throughout the world. Sun et al. (2009)
found that the joint toxicity of copper and zinc in sea cucum-
ber Apostichopus japonicus occurred by an antagonistic ef-
fect, whereas Yang et al. (2003) found that the joint toxicity
of copper and cadmium against tadpole occurred through a
synergistic effect. Other studies on joint toxicity investigated
the effects of uranium and copper on Lemna paucicostata
(Charles et al. 2006), and the effects of cadmium, lead, and
zinc on fish (Wang  et al. 2003). The results indicated that
the joint toxicity of heavy metals is not simply the sum of
single metal toxicities. However, most studies concentrated

on the toxicity of binary, ternary, or quaternary mixtures,
and little attention has been paid to the evaluation of joint
toxicity.

Given that it is not feasible to assess pollutant mixtures
with all possible compositions, we used a factorial design to
fully explore the joint toxicities of pollutant mixtures with
many concentrations of all components. A factorial experi-
ment is a crossed experiment that consists of two or more
factors. The experiment studies the effect of each factor on
the response variable, as well as the effects of interactions
between factors on the response variable (Montgomery 1998,
Wei et al. 2007). In studying the joint toxicity of heavy met-
als, the factorial experiment can further analyse the degree
of pollution and the toxicity mechanism of heavy metal pol-
lutants.

This study used Ni2+, Co2+, Cr3+ and Pb2+ as the compo-
nents of the mixed system, and used the factorial experi-
ment to study the joint toxicity of the mixed system. The
experimental results were used to establish a multiple linear
regression model and a back propagation (BP)-artificial neu-
ral network model to analyse the joint toxicity effects.

MATERIALS AND METHODS

Reagents and instruments: The toxicity testing program
used the following equipment: biological toxicity test in-
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strument (DXY-2, Nanjing Soil Research Institute, Chinese
Academy of Sciences), a vortex oscillator (5PCFT-IR,
Ronghua), a cyclotron oscillator (HJ-6, Ronghua), a mag-
netic stirrer (HY-5, Ronghua), a vortex mixer (QL-901,
Haimen Lindberg), an electronic balance (TP-220A,
Xiangyi), and a digital analysis balance (TG328B, Shang-
hai Balance). Photobacterium phosphoreum lyophilized
powder T3 (Nanjing Soil Research Institute, Chinese Acad-
emy of Sciences) was used as a biological indicator. The
compounds selected as heavy metal pollutants were
Pb(NO

3
)

2
, Cr(NO

3
)

3
·9H

2
O, Ni(NO

3
)

2
·6H

2
O, and Co(NO

3
)

2
, and

obtained as analytically pure reagents.

Experimental method: Toxicity testing of heavy metals
on photobacteria was based on the Chinese Government
Standard GB/T 15441-1995 (Water quality-Determination
of the acute toxicity-Luminescent bacteria test). The toxic-
ity of heavy metals was characterized by the rate of inhibi-
tion of photobacteria, and the relative deviation of the re-
peated detection was not higher than 15%.

Experimental design: The joint toxicity of Ni2+, Co2+, Cr3+

and Pb2+ was studied in two-level factorial experiments. In
each experiment, each metal represented a “factor”. Given
that two-level factorial experiments were used in this study,
each factor had a high level (EC30) and a low level (EC10).
Another 16 sets of experiments were randomly mixed with
the concentration of heavy metals outside the factorial ex-
perimental level. Design parameters are given in Table 1.

RESULTS AND DISCUSSION

Construction and analysis of multiple linear regression
model: The experimental results are presented in Table 2.
Datasets 1-16 were used for analysis of variance, and the
results are given in Table 3. The main effect of the four
heavy metals and the interaction between the heavy metals
on the inhibition rate of the photobacteria were statistically
significant. To further clarify the relationship between the
dose concentration of heavy metals and the rate of inhibi-
tion of the photobacteria a multiple linear regression model
was established with concentration as an independent vari-
able and the inhibition rate as the dependent variable. A
goodness-of-fit test is shown in Table 4, an F-test is shown
in Table 5, and a t-test is shown in Table 6.

According to Tables 3-5, the correlation coefficient of
the multiple linear regression model was 0.997, which sug-
gests consistent agreement between the experimental and
predicted results. All variables were evaluated via the t-test
and F-test at a confidence level of 95%. The resulting rela-
tion is defined by Eq. 1:

T = 6.82 × 102 × Cr + 5.55 × 103 × Co + 244.992 ×
Ni – 2 × 106 × Pb × Co - 7.08 × 104 × Cr × Co - 1.67 ×

103 × Cr × Ni - 1.38 × 104 × Co × Ni + 3.019 × 107 ×
Pb × Cr × Co + 5.14 × 106 × Pb × Co × Ni + 1.44 ×
105 × Cr × Co × Ni - 4.6 × 107 × Pb × Cr × Co × Ni
- 14.95      ...(1)

where T represents inhibition rate of heavy metals on
the photobacteria (%), and Pb, Cr, Co and Ni represent the
concentrations of the respective metal ions (mmol/L).

According to Eq. 1, the joint toxicity of Ni2+, Co2+, Cr3+

and Pb2+ mainly occurs through multiple interactions. The
independent effects of Ni2+, Co2+ and Cr3+, and the interac-
tions of Pb2+-Co2+, Cr3+-Co2+, Cr3+-Ni2+, Co2+-Ni2+, and Pb2+-

Table 1: Factorial design levels for joint toxicity of Pb2+, Cr3+, Co2+ and
Ni2+ on photobacteria.

Level (mmol/L) Pb2+ Cr3+ Co2+ Ni2+

Low(-)EC10 0.0001 0.0432 0.0001 0.0166
High(+)EC30 0.0012 0.1075 0.0095 0.3552

Table 2: Joint toxicity to photobacteria with different heavy metal con-
tents.

Group Pb2+ Cr 3 + Co2+ Ni2+ Inhibition
(mmol/L) (mmol/L) (mmol/L) (mmol/L) ratio (%)

1 0.0001 0.0432 0.001 0.0166 15.57
2 0.0012 0.0432 0.001 0.0166 19.52
3 0.0001 0.1075 0.001 0.0166 60.92
4 0.0012 0.1075 0.0095 0.0166 53.01
5 0.0001 0.0432 0.0095 0.0166 38.97
6 0.0012 0.0432 0.0095 0.0166 29.48
7 0.0001 0.1075 0.0095 0.0166 40.65
8 0.0012 0.1075 0.0001 0.0166 47.06
9 0.0001 0.0432 0.0001 0.3552 78.25
10 0.0012 0.0432 0.0001 0.3552 77.32
11 0.0001 0.1075 0.0001 0.3552 79.51
12 0.0012 0.1075 0.0001 0.3552 82.85
13 0.0001 0.0432 0.0095 0.3552 74.49
14 0.0012 0.0432 0.0095 0.3552 79.36
15 0.0001 0.1075 0.0095 0.3552 68.88
16 0.0012 0.1075 0.0095 0.3552 79.03
17 0.0001 0.0432 0.0095 0.3552 85.37
18 0.0001 0.0654 0.0017 0.3552 87.33
19a 0.0001 0.0833 0.0008 0.1265 73.16
20 0.0001 0.1075 0.0001 0.2373 58.08
21 0.0004 0.0833 0.0056 0.1265 55.60
22a 0.0004 0.0432 0.0008 0.2373 68.24
23 0.0004 0.0654 0.0017 0.0166 40.52
24 0.0004 0.1075 0.0001 0.3552 78.71
25a 0.0008 0.0432 0.0001 0.0166 22.94
26 0.0008 0.0654 0.0056 0.0833 54.79
27a 0.0008 0.0833 0.0008 0.1265 55.78
28 0.0008 0.1075 0.0095 0.2373 68.30
29a 0.0012 0.0432 0.0001 0.0833 32.05
30 0.0012 0.0654 0.0017 0.0166 40.20
31a 0.0012 0.1075 0.0095 0.3552 80.30
32a 0.0012 0.0833 0.0008 0.1265 71.33
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Cr3+-Co2+, Pb2+-Co2+-Ni2+, Cr3+-Co2+-Ni2+, and Pb2+-Cr3+-
Co2+-Ni2+ were the main factors to affect the photobacteria
activity. Ni2+, Co2+, Cr3+-Co2+, Cr3+-Ni2+, and Pb2+-Co2+ pro-
duce antagonistic effects, Pb2+-Co2+-Ni2+, Cr3+-Co2+-Ni2+, and
Pb2+-Cr3+-Co2+ produce synergistic effects, while Pb2+-Cr3+-
Co2+-Ni2+ also exert antagonistic effects. Among the four
heavy metal pollutants, Co2+ was most likely to interact
with other pollutants, followed by Cr3+ and Ni2+. Although
the analysis of variance showed some toxicity attributable
to Pb2+, Pb2+-Cr3+, and Pb2+-Ni2+, these contributions to the
toxicity was very small.

Construction and analysis of BP-ANN model: Artificial
neural networks (ANNs) were recently developed as a pow-
erful modelling tool, and have been used for many engi-
neering applications such as prediction, optimization, clas-
sification, and pattern recognition (Lou 2002). ANNs have
a highly interconnected structure similar to biological neu-
ral networks and consist of a great number of processing
elements called neurons that are arranged in different lay-
ers. Each network comprises an input layer, an output layer
and one or more hidden layers (Morgan & Chow 2004). The
BP-ANN is a typical ANN, and can implement any complex
nonlinear mapping functions. They are increasingly used
in applications that include environmental science, predic-
tion of Pb2+ in aqueous solution and chlorophenol removal
effects, algal content in lakes, groundwater chloride migra-
tion, and insecticide concentration studies (Zhang 1995,
Qu et al. 2004). A BP-ANN model was established to study
the effects of heavy metals on the joint toxicity against
photobacteria in a factorial experiment.

The training and test datasets for the ANN model (Table
1) were randomly selected; 27 of 32 data points were used
for training and the remaining 5 were used for testing. The
model used four input variables (Ni2+, Cr3+, Co2+, Pb2+ con-
centrations: X1, X2, X3, X4; mmol/L), inhibition rate (Y;
%) as the single output variable, eight hidden layers, a struc-
ture of 4-8-1 for good performance, train epochs E = 4300,
train goal G = 0.004, and learning efficiency L = 0.01.

The correlation coefficient (R2), the nash-sutcliffe coef-
ficient (NSC), and the mean square error (MSE) were used
to assess the validity of the model. If the predictive value
and the experimental value of R2 > 0.90, the predictive
ability is high, and if R2 < 0.90, the predictive ability is
limited. According to Fig. 1, R2 = 0.9923 > 0.90, and the
distribution of scattered points in the straight line indicates
that the model shows good agreement between the predicted
and experimental values.

Equation 2 gives the relation for the NSC:

2

2

( )1
( )

cale test

test test

Y YNSC
Y Y

 
 

         ...(2)

Where testY  is the experimental value, caleY  is the pre-
dicted value, and testY  is the mean experimental value. An
NSC of 1 indicates that the predicted value is equal to the
experimental value. When 0  NSC 1, the predicted value
is close to the experimental value, when the NSC is close to
1, and when NSC   0, the credibility of the predicted value
is lower than the experimental value (Zhang 2003). The cal-
culated NSC value of 0.9437 shows good correlation between
the predicted and experimental data, and that the model shows

Table 3: Variance analysis of joint toxicity of Pb2+, Cr3+, Co2+ and Ni2+

to photobacteria.

Quadratic df Mean F Sig.
sum square

Calibration
model 16124.595a 15 1074.973 107.497 0.000
Intercept 106926.949 1 106926.95 314.56 0.000
Pb 13.509 1 13.509 7.948 0.012
C r 1224.046 1 1224.046 720.180 0.000
Co 10.245 1 10.245 6.028 0.026
Ni 12364.167 1 12364.167 7274.588 0.000
Pb*Cr 23.089 1 23.089 13.585 0.002
Pb*Co 22.736 1 22.736 13.377 0.002
Pb*Ni 74.790 1 74.790 44.004 0.000
Cr*Co 653.361 1 653.361 384.412 0.000
Cr*Ni 1182.290 1 1182.290 695.613 0.000
Co*Ni 67.841 1 67.841 39.915 0.000
Pb*Cr*Co 103.545 1 103.545 60.922 0.000
Pb*Cr*Ni 3.787 1 3.787 2.228 0.155
Pb*Co*Ni 17.163 1 17.163 10.098 0.006
Cr*Co*Ni 274.512 1 274.512 161.512 0.000
Pb*Cr*Co*Ni 89.515 1 89.515 52.667 0.000
Error 27.194 16 1.700
Sum 123078.738 32
Correction 16151.789 31
sum
R2=0.998 Adjust R2=0.997

Note: Significant effect for the research object in bold.

Table 4: Goodness-of-fit test for regression model.

Correlation coefficient R R2 Adjust R2 Error

0.997 0.994 0.989 2.341

Table 5: F test for regression model.

Model Quadratic df Mean F P
sum square

Regression 16054.595 14 1146.739 200.050 0.000
Residuals 87.448 17 5.732
Sum 16151.789 31
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Fig. 1: Correlation curve for experimental and model-predicted values.

Fig. 2: Inhibition rate of the mixed system with different contents of Pb2+, Cr3+, Co2+ and Ni2+.

good prediction performance.

Equation 3 shows the relation for MSE:

2

, ,
1

1 ( )
N

cale i test i
i

MSE Y Y
N 

          ...(3)

Where N is the number of input data, and ,cale iY  and
,test iY  are the predicted and experimental values, respec-

tively. The MSE values were 0.0052 for training and 0.0489
for testing, indicating that the model has good prediction
ability and generalization ability.

To determine the toxic effects of different concentra-
tions on the photobacteria and clarify the mechanism of
joint toxicity, we used the BP-ANN model to simulate and
predict the relationship between the four heavy metal com-
pounds and their effects on the inhibition rate. This required
changes to the mixture concentrations, with change ranges
of 0-0.0012 mmol/L for Pb2+, 0-0.1082 mmol/L for Cr3+, 0-
0.0100 mmol/L for Co2+, and 0-0.0360 mmol/L for Ni2+.
The maximum content of each heavy metal element was
used as the initial value. According to the same change rate,
the inhibition rate of the photobacteria was simulated when
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the heavy metal content was changed. The simulation re-
sults are shown in Fig. 2.

As shown in Fig. 2, as Pb2+, Cr3+ and Ni2+ content in-
creased, the inhibition rate of the mixed system gradually
increased. The change of Cr3+ content in the mixed system
was the most influential, while the change of Pb2+ content
showed the smallest effect. In contrast, Co2+ showed the
opposite trend where increased Co2+ content saw the inhibi-
tion rate of the mixed system decrease.

Comparison of multiple linear regression model and BP-
ANN model: The study found that the multiple linear re-
gression model and the BP-ANN model of the effects of four
heavy metals on photobacteria had better characterization
and prediction function. Both models were able to analyse
the joint toxic effects of heavy metals. According to the BP-
ANN model, in a certain range, the concentration of Co2+

increased and the toxicity of the mixed system decreased. In
contrast, the other three heavy metals showed the opposite
phenomenon with changes of Cr3+ content being the most
influential, and Pb2+ the least influential. Promotion of inhi-
bition was not an effect of a single metal, with the interac-
tion of heavy metal components playing an important role.
Changes in Pb2+ content had the smallest effect on the mixed
system, because the interaction between Cr3+, Co2+ and Ni2+

weaken the single toxicity of Pb2+. In the multiple linear
regression model, the regression coefficients for Pb2+, Cr3+,
Co2+ and Ni2+ were all positive, and they were promoted in
the system. This conclusion does not conform with the BP-
ANN model, because the study of the interaction between
the heavy metals hides the separate effects. Therefore, the
BP-ANN model is advantageous in analysis of the effect of

the single heavy metal concentration on the toxicity of the
mixed system, while the multiple linear regression model is
a more comprehensive analysis of the internal interactions
of the mixed system.

CONCLUSIONS

Factorial experimental design was used to study the
toxicities of binary, ternary, and quaternary metal mixtures.
High-quality models were fitted to the experimental data,
and interactions between the components in metal mixtures
were indicated by the interaction terms in the models. The
joint toxicity of Ni2+, Co2+, Cr3+, and Pb2+ occurs through
multiple interactions. Ni2+, Co2+, Cr3+-Co2+, Cr3+-Ni2+, Pb2+-
Co2+, and Pb2+-Cr3+-Co2+-Ni2+ exert antagonistic effects,
while Pb2+-Co2+-Ni2+, Cr3+-Co2+-Ni2+, and Pb2+-Cr3+-Co2+ act
synergistically. The separate coefficients of heavy metals
in the model were small, so the single toxicities were less
affected than the joint effects of the heavy metals. By the
BP-ANN model, the increased concentration of Co2+ low-
ered the inhibition rate of the mixed system. For the three
other heavy metals, the effect of Cr3+ on the mixed system
was the largest, and increasing the concentration of Cr3+

gave the highest toxicity in the mixed system. These find-
ings are expected to provide useful background in efforts to
control of heavy metal pollution.
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