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ABSTRACT

Environmental baseline is essential for local environmental management, and a series of methods have
been carried out for solving this issue. In this study, sixty-two shallow groundwater samples from the urban
area in Suzhou, northern Anhui Province, China have been collected and analysed for their iron concentrations,
and then processed by either statistical (box plot) or spatial analyses (spatial clustering) for outlier identification.
The results indicate that four and five samples have been identified as outliers by box plot and spatial
analysis, respectively, and the rest of the samples (fifty-four) have been set as environmental baseline
samples. Their mean ± 2 concentration is then set as environmental baseline (0-104.720 µg/L). The study
demonstrated that spatial analysis is useful for assisting the outlier identification during evaluating the
environmental baseline relative to statistical methods.
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INTRODUCTION

The environmental background is important for local envi-
ronmental management, because it has been set as the crite-
rion for evaluating the pollution degrees in areas. Nowa-
days, most of the environmental backgrounds, such as the
suggestions of World Health Organization (WHO 2008),
are determined in a global or national scale (e.g. CEPA
1990), and they have been widely used for the studies of
environmental pollution or management (Sun et al. 2012,
Wongsasuluk et al. 2014). However, although these criteri-
ons are good choice for a global or national comparison, it
is not suitable for the environmental studies or management
in a regional scale, because the local environmental back-
ground, which is determined by local parent materials, can
vary significantly from area to area. And therefore, a sim-
ple application of global or national environmental back-
ground can lead to the wrong understanding about the pol-
lution degrees.

Nowadays, a large number of studies (Molinari et al.
2012) related to the determination of local environmental
background have been processed. However, most of the pre-
vious studies found that the background, which means the
natural condition without any anthropogenic contribution,
is hard to obtain because of the long history of human ac-
tivities. And therefore, the concept of environmental base-
line, which was first proposed by Salminen & Tarvainen

(1997), has been put forward, and a large number of studies
have been carried out for evaluating the baseline value, es-
pecially in a regional scale (Reimann & Garrett 2005).

A series of techniques, including statistical and non-sta-
tistical, have been carried out for evaluating the environ-
mental baseline (Reimann et al. 2005). Taking for instance,
the cumulative probability plot and Q-Q plot, which assume
the normality or log-normality of concentration distribu-
tion, have long been used to determine the environmental
baseline (Reimann & Garrett 2005, Galuszka 2007). Moreo-
ver, some other methods, such as the model based objective
methods (including iterative 2 technique and the calcu-
lated distribution function) (Nakic et al. 2007, Sun et al.
2013, Urresti-Estala et al. 2013) have also been applied, and
they revealed that it is more realistic to view geochemical
baseline as a range of values rather than an absolute value
because it changes both regionally with the basic geology
and, locally with the type and genesis of overburden. These
studies demonstrated that if we want to get reliable infor-
mation about the environmental baseline, the outliers should
be first considered.

In this study, the geo-statistical and spatial analysis, to-
gether with the aid from geographic information system
(GIS), have been applied for the iron concentrations in shal-
low groundwater in the urban area of Suzhou, northern
Anhui Province, China. The goals of the study include: (1)
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identifying the concentration outliers (samples) and (2) es-
tablishing the environmental baseline of iron in the shallow
groundwater.

MATERIALS AND METHODS

Sampling and analysis: As an agriculture and coal pro-
duction dominated city, Suzhou is located in the northern
Anhui Province, China. The annual rainfall in the city is
only 774-895 mm and most of them are concentrated mainly
in the period of May to September. And therefore, the total
amount of surface water is limited and, the groundwater is
important for the industrial, agricultural and domestic use.
This phenomenon can be demonstrated by the well distri-
bution in the urban area where about 30% of the urban resi-
dents use water by pumping from the shallow wells (less
than 30 m) in the urban area. In this study, these shallow
wells have been taken for research objects and, during the
period between September and October 2013, a total of
sixty-two shallow groundwater samples have been collected
in the urban area of the city (Fig. 1).

All of the samples were collected following the stand-
ard procedures: firstly, they were filtered with 0.45 µm pore-
size membranes before collecting into a 2.0 L polyethylene
bottles that have been cleaned in the laboratory; secondly,
they were immediately acidified to pH < 2 with HNO

3
 for

preventing the precipitation and/or adsorption of elements
by the bottle. Finally, all the samples were immediately
stored in a portable refrigerator and then sent for analysis
within 24 hours. Analysis was carried out at the Engineer-
ing and Technology Research Center of Coal Exploration in
Anhui Province, China. Atomic absorption spectrometer
(AAS) was used for analysing the concentration of iron.
Calibration curve was obtained using a series of different
concentrations of lead standard and the coefficient of the
curve was 0.99.

Data analyses: The procedures of data analyses were as fol-
lows: firstly, all the iron concentrations were processed by
the software Mystat (version 12), and the minimum, maxi-
mum, mean, standard deviation, coefficient of variation,
skewness and significant value of Anderson-Darling nor-
mality test have been obtained. Then, the software Surfer
(version 11) has been applied for producing the contour map
of iron concentrations, the gridding method is chosen for
kriging. Finally, the software GeoDa (version 1.4.6) has been
applied for spatial analysis: The box plot and map with Hinge
= 1.5 (similar to the Box-plot in Reimann & Garrett 2005)
has been applied for statistical outlier identification. With
this procedure, the lower and upper outliers can be identi-
fied. And then, the spatial cluster analysis, which names
Univariate Local Moran’s I in the GeoDa software, has been

applied for the dataset, and five categories (including not
significant, high-high, low-low, low-high and high-low) can
be obtained. The samples in high-high cluster were deter-
mined as hotspot samples, whereas samples in low-high and
high-low clusters were selected as outliers. After removing
the outliers obtained by either box map or spatial analysis,
the mean ± 2 (Nakic et al. 2007) of the rest of the samples
was then considered to be baseline values. During the spa-
tial analysis, rook contiguity was chosen for weight calcula-
tion. In comparison with other hotspot identification method
(e.g. Getis’s G index, spatial scan statistics and Tango’s C
index) (Getis & Ord 1992, Ishioka et al. 2007, Tango 1995),
the Moran’s I index examines the individual locations, ena-
bling hotspots to be identified based on the comparison with
the neighbouring samples.

RESULTS AND DISCUSSION

Descriptive statistics: The descriptive statistics of the iron
concentrations (µg/L) are synthesized in Table 1. As can be
seen from the table, the iron concentrations of the samples
in this study have a broad range from 1.643 to 272.690 µg/L.
Their mean and median values are 58.952 and 48.049 µg/L,
respectively. Based on the quality standards for groundwater
in China (µg/L, GB/T 14848-93), the samples in this study
can be subdivided into three categories: most of the sam-
ples (fifty-three) are classified to be class I ( 100 µg/L),
and eight samples are classified to be class II ( 200 µg/L),
whereas only one sample is classified to be class III ( 300
µg/L). This result suggests that all of them can meet the
requirement for drinking, irrigation and industry directly
based on their iron concentrations. Even in comparison with
the WHO standard (0.3 mg/L, WHO 2008), all the samples
are suitable for drinking.

Moreover, the spatial distribution of the iron concentra-
tions in the shallow groundwater in this study shows mod-
erate-high coefficient of variation (0.801), implying that the
shallow groundwater system in the area might have been af-
fected by human activities, although the groundwater in it
still has good quality. Alternatively, it might be the result of
geological heterogeneity in the groundwater aquifer (e.g. wall
rock variation or, different extents of water-rock interaction).

It can also be obtained from Table 1 that the p-value of
Anderson-Darling normality test is less than 0.05, implying
that the iron concentrations of the samples in this study can-
not pass the normality test, which might be a suggestion of
the existence of anthropogenic contribution (Reimann &
Garrett 2005). This consideration is further supported by the
contour plots of the iron concentrations in the area (Fig. 2),
in which a series of centres with high iron concentrations
can be identified, and most of them are presented in the cen-
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tral of the map with a linear distribution.

Box plot-outlier identification: A series of studies revealed
that the geochemical baseline and the pollution data are dif-
ferent in both their statistical and spatial distributions
(Reimann & Garrett 2005, Meklit et al. 2009). For identify-
ing the statistical differences, the box plot, a convenient way
of graphically depicting groups of numerical data through
their quartiles, has long been used for outlier selection dur-
ing environmental background or baseline studies (Reimann
& Garrett 2005). It is a statistical method by calculating the
lower and upper inner fences (see in function 1 and 2, re-
spectively) (Frigge et al. 1989), and the samples with higher
or lower concentrations relative to the fences are considered
to be outliers.

Function 1: 25% percentile – 1.5 × (75% percentile - 25%
percentile)

Function 2: 75% percentile + 1.5 × (75% percentile - 25%
percentile)

In this study, all iron concentrations were firstly exam-
ined by box plot for identifying the statistical outliers (Fig.
3). Based on the functions listed above, the lower and upper
inner fences of the iron concentrations in this study were
calculated to be -30.805 and 136.755 µg/L, and only four
samples (sample 27, 35, 56 and 57) with iron concentra-
tions higher than 136.755 µg/L have been identified as
outliers. For a more clear presentation, their locations are
shown in Fig. 3 as a box map. As can be seen from the fig-
ure, these four samples are located in the areas with high
iron concentrations relative to Fig. 2, which indicates that
the areas with high lead concentrations might have been
affected by human activities.

Spatial cluster-outlier and hotspot identification: Rela-
tive to the statistical outliers, the samples with unusual val-
ues relative to their neighbourhood are also considered to
be outliers (spatial outlier, Lark 2002). As mentioned above,
a series of methods have been applied and their principles
are as follows: the variograms are used to model the spatial

autocorrelation and with a cross-validation procedure of or-
dinary kriging, and an estimated value is generated for every
measurement, and then the standardized estimation error
can be used for identifying the spatial outlier (Laslett &
Mcbratney 1990).

Among these methods, the Moran’s I is a commonly used
indicator of spatial autocorrelation. There are two types of
Moran’s I which have been reported previously: One is the
global Moran’s I, which is used to study the overall spatial
autocorrelation, another one is LISA (local indicators of spa-
tial association), which is applied to identify the degree of
spatial autocorrelation in each specific location (Anselin
1995). More importantly, the LISA can also be used for iden-
tifying the existence of local spatial clusters by generating
cluster maps (Harries 2006), which can be used for identi-
fying the spatial hotspot and outliers (Zhang & McGrath
2004, Li et al. 2013).

Based on the calculation of GeoDa, all the samples in
this study have been classified into four categories: not sig-
nificant (57 samples) and significant (5 samples). Moreo-
ver, all the significant samples can be classified into three
secondary categories: two, one and two samples are classi-
fied to be high-high (sample 36 and 56), low-high (sample
54) and high-low (sample 11 and 26) clusters, respectively.

According to previous studies (Zhang et al. 2008), ei-
ther high-high or low-low samples can be clustered to be
spatial clusters, whereas high-low and low-high samples are
considered to be spatial outliers. As can be seen from Fig.
4, two hotspots can be identified, one is located in the cen-
tral right of the map (sample 36) and another is located in
the central west of the map (sample 56), which might be an
indication of special human activities and, in the area near
to these two points, the groundwater safety related to iron
pollution should be careful. Moreover, the high-high, high-
low and low-high samples are considered to be spatial
outliers, including 5 samples as mentioned above (sample
11, 26, 36, 54 and 56).

Table 1: Summary statistics of the whole dataset and those resulting from outlier removing by three kinds of methods.

Methods Whole data Box plot Spatial outlier Combination

N of cases 62 58 57 54
N of outliers 0 4 5 8
Minimum 1.643 1.643 1.643 1.643
Maximum 272.690 136.345 272.690 136.345
Median 48.049 43.943 43.532 40.246
Mean 58.952 50.060 54.800 46.954
Standard deviation 47.219 31.133 45.563 28.883
Coefficient of variation 0.801 0.622 0.831 0.615
Skewness 2.048 0.837 2.461 0.895
p-value <0.01 0.014 <0.01 0.043
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Fig. 1: Sample locations in the study area.

Fig. 2: Contour map of iron concentrations.

Fig. 3: Outlier distribution based on Box map.
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Environmental baseline evaluation: Comparatively, af-
ter statistical identification (box plot), the samples with ex-
treme high values were removed. However, this procedure
does not consider the spatial variability simultaneously, and
it is therefore, inadequate to define the unique environmen-
tal baseline in a local scale. Therefore, the combination use
of two methods (either box plot or spatial) can get more
reliable information, as it can remove the statistical and
spatial outlier simultaneously (Meklit et al. 2009).

Considering this, a total of eight samples are classified
to be outliers, and the rest fifty four samples are therefore
set to be environmental baseline samples and the summary
statistics of the samples with different outlier identification
methods are shown in Table 1.

As can be seen from the table, after outlier removing by
box plot, the number of remaining samples is fifty eight,
and their mean concentration is 50.060 µg/L and the p-value
of normality test is 0.014, indicating that they cannot pass
the normality test. However, after spatial outlier removing,
the remaining samples are fifty seven with mean concen-
tration equals to 54.800 µg/L, and they cannot pass the nor-
mality test also because they obtain p-value (<0.01) lower
than the samples after box plot selection.

As to the combination method, the number of remain-
ing samples is fifty four, and their mean concentration is
46.954 µg/L (standard deviation of 28.883 µg/L), and the
environmental baseline is, therefore, established to be 0-
104.720 µg/L according to Nakic et al. (2007). This result is
similar to the results obtained by using model based objec-
tive methods (iterative 2 technique and the calculated dis-
tribution function) (Nakic et al. 2007, Urresti-Estala et al.
2013), the baseline values determined by the two methods
are 0-81.7 and 0-96.6 µg/L, respectively. More importantly,
after the combination use of box plot and spatial outlier se-

lection also, the iron concentrations of the rest of the sam-
ples still cannot pass the normality test, as a much higher
p-value (0.043) relative to other methods have been obtained
(Table 1), which probably indicates that the normal distri-
bution is suitable for the iron concentrations in the shallow
groundwater of this study.

CONCLUSIONS

Based on the statistical and spatial analyses of the iron con-
centrations in the shallow groundwater collected from the
urban area of Suzhou, northern Anhui Province, China, the
following conclusions have been made.

1. The groundwater samples have low iron concentrations
relative to the Chinese and WHO standards. However,
they have moderate-high coefficient of variation, which
might be an indication of anthropogenic contribution.

2. Four outlier samples with highest iron concentrations
have been identified by box plot and map, whereas five
samples have been identified as outliers by spatial analy-
sis. Among these outliers, two of them have been iden-
tified as hotpots located in the right and central west of
the map, which might be an indication of special human
activities.

3. The environmental baseline based on the rest of the sam-
ples is estimated to be 0-104.720 µg/L, and it is similar
to the results obtained by model based objective meth-
ods.
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Fig. 4: Outlier distribution based on spatial analysis
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