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ABSTRACT
Geostatistics, traditional statistics and landscape indicators were used to analyse the influence of sampling
resolution on the prediction of spatial variability of soil organic matter (SOM) in a typical Mollisol of northeast
China. Gaussian models were recognized as the best to predict SOM spatial distribution in all resolution
groups. Spatial autocorrelations as influenced by structure factors were moderate for groups 0.025, 0.037b,
0.074a, 0.074c and 0.074d, and strong for 0.015, 0.037a, 0.074b and 0.074e. The relatively shorter
autocorrelation distances (A0) in data groups were all close to 7 km. Means and standard deviation (SD) of
0.025 resolution was close to 0.015. TA (Total area), LPI (Largest patch index) and COHESION (Patch
cohesion index) were similar between resolutions 0.015 and 0.025. Generally, a sample-grid ≤ 0.025 km2

was recognized as a better resolution to predict SOM spatial variability by ordinary kriging interpolation if a
sample-grid method was adopted in the black soil region of northeast China. The accurate prediction of soil
nutrient heterogeneity by interpolations (Geostatistics) is mainly determined by the representative of soil
sampling which should reflect through resolution the entire environmental factors in the research area.
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INTRODUCTION

Generally, it is difficult to predict accurately the soil nutri-
ent distribution in an agricultural watershed, because the spa-
tial heterogeneity of soil nutrients in the area is affected by
many complicated factors (Lal 1998, Huang 2000, Barton et
al. 2004, Atreya et al. 2008). One of the primary factors af-
fecting nutrient distribution is physical movement of the soil,
as runoff from upslope areas carries topsoil to lower slope
positions, thus altering the spatial distribution of soil and
water, and affecting soil nutrient content in both affected
areas (Balasundram et al. 2006, Noorbakhsh et al. 2008,
Verity & Anderson 1990, Moulin et al. 1994). It is apparent
that the steepness of a slope influences the intensity of soil
erosion and thus affecting soil nutrient distribution in the
field, but soil erosion as affected by slope also varies ac-
cording to the type of soil (Agassi et al. 1990, Walson &
Laflen 1986, Liu et al. 2006, Morgan 2005). Slope aspect
can also be important in affecting nutrient distribution, as
equatorial slopes tend to be dryer than polar-facing ones
because they have greater evapo-transpiration rates (Rundel
1981), while the amount of rainfall, and thus runoff, tends
to be greater on a windward slope than on the leeward side
(Agassi et al. 1990). Studies of the effect of land management
on nutrients has shown that cultivation generally increases
the potential for soil erosion due to the breakdown of soil

aggregates and reduction of soil cohesion, and thus decreas-
ing soil nutrient content in the profile (Horn et al. 1995,
Walson & Laflen 1986). By extension, since cross-slope till-
age reduces soil loss compared to down-slope tillage
(Voroney et al. 1981, Van Doren et al. 1950), it can be ex-
pected that nutrient levels would also be less affected. It is
also reported that soil nutrient content varies considerably
under different crops (Huang 2000, Gardner & Gerrard 2003),
and that generally continuous corn (Zea mays L.) and corn-
soybean (Glycine max L.) rotations do not result in a signifi-
cant accumulation of soil organic carbon (SOC) (West &
Post 2002). Fertilizer application rates can also affect soil
nutrient content dynamics in the field (Lal 2004, Liu et al.
2006). Thus, soil nutrient heterogeneity is complexly influ-
enced by so many factors, and how to improve the accuracy
of prediction was focused on by researchers in recent years.

Generally, geostatistics, linear models, neural networks,
regression trees, fuzzy systems and other analytical proce-
dures have been used to analyse soil nutrient distributions
and are considered good tools for use in understanding nu-
trient dynamics in the field (Zhang et al. 2007, Liu et al.
2006, DeBusk et al. 1994, Park & Lekm 2002). Although
the sophisticated analytical techniques available and the rec-
ognition of the importance of understanding nutrient vari-
ability, but soil nutrient variability with respect to sampling
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resolution is still poorly understood (Silveira et al. 2009,
Gallardo 2003, Zhang et al. 2007, Zhang et al. 2011). Cur-
rently, the spatial pattern and ecological flow process are
affected by sampling resolution is well known in landscape
ecology (Fu et al. 2011, Forman 1995). Resolution refers to
the resolution of the data, i.e., the area represented by each
data unit. For example, a fine-resolution map might organ-
ize information into l ha units, whereas a map with an order
of magnitude coarser resolution would have information or-
ganized into l0 ha units (Turner et al. 1989). Currently,
geostatistics, a popular and powerful approach, along with
conventional laboratory analysis is still used to predict soil
nutrient distribution in soils because the prediction is rela-
tively accurate, although the methods require a fairly dense
sampling network and incur a high cost (Fu et al. 2013, Sauer
et al. 2006, Wu et al. 2003, Liu et al. 2013). To understand
soil nutrient spatial variability by geostatistics method, the
sample-grid method and sample-random method are usually
adopted for soil sampling, and sample points should be dis-
tributed uniformly in space, also the data need to fit to a
normal distribution and second order stationary hypothesis
(Zhang et al. 2007, 2011). However, there is always a coin-
cident spatial distribution of soil nutrients predicted by
geostatistics with the sample random method or sample-grid
method under different resolutions. Despite the sample points
distribute uniformly, and the data fit to a normal distribu-
tion and second order stationary hypothesis, the regression
also shows the estimated value fits well with the actual value.
In this study, in order to determine the effect of sampling
resolution on the prediction of soil nutrient distribution, soil
samples were collected in 2007 in a 6.55 km2 region of typi-
cal Mollisol soils. Using Ordinary Kriging procedures and
landscape indictor methods to describe the spatial variabil-
ity of the soil organic matter (SOM), also the spatial distri-
butions were compared among the four resolutions and
among different data groups within the same resolution (Yost
et al. 1982, Oliver 1987, Debusk et al. 1994).

MATERIALS AND METHODS

The 6.55 square kilometre (1.57 km × 4.17 km) study area is
located in Guangrong village (47.21-47.23°N, 126.50-
126.51°E) in Hailun city, Heilongjiang province, Northeast
China (Fig. 1). The area falls in the north temperate zone
and has a continental monsoon climate of cold and arid
weather in winter and hot and rainy conditions in summer.
Average annual precipitation is 530 mm, with 65% falling
in June, July and August. Average precipitation from March
to October in the 2002-2008 period was 472.3 mm. The
average annual temperature is 1.5°C and annual sunshine
averages between 2600 and 2800 hours. Total annual solar
radiation is 113 MJ cm-2 and annual average available ac-

cumulated temperature (≥ 10°C) is 2450°C. The prevailing
wind is from the north-west in winter and spring and from
the south-west in summer (Soil Survey Service of Hailun
1985). Formation of soils in the study area began during the
Quaternary period on loess deposits under natural grasses,
and now have a rich, dark organic horizon and are classi-
fied as Mollisols (Zhang et al. 2007). These soils have a
silty clay loam texture (Table 1), and most slopes are in-
clined at less than 5°, but are over 200 meters in length.

SOIL SAMPLE COLLECTION AND MEASUREMENT

Four hundred forty eight soil samples were collected in a
sample-grid method from a depth of 0-20 cm in the autumn
of 2007 after harvest (Fig. 2) (Li et al. 2008). Each soil sample
was comprised of a mixture of six cores taken randomly from
within a 20 m2 plot. Samples were air-dried and sieved at
0.25 mm for analysing soil organic matter (SOM). SOM was
measured using a Vario ELIII.

Sample points were classified into five data groups (G1,
G2, G3, G4 and G5) randomly at first, to ensure that the
data should have a close to normal distribution or close to
normal distribution after transformation by the logarithm
method in each group. Then the five data groups were
regrouped into nine data groups of 0.015 (G1+G2+G3
+G4+G5), 0.025 (G1+G3+G5), 0.037a (G1+G4), 0.037b
(G2+G5), 0.074a (G1), 0.074b (G2), 0.074c (G3), 0.074d
(G4) and 0.074e (G5) (Table 2) again within no repeat sam-
ple in the new data group of the resolution 0.015 km2, 0.025
km2, 0.037 km2, or 0.074 km2, respectively.

KRING ANALYSIS

The spatial distribution of SOM was determined by a
geostatistical analysis module using ArcGIS10 (ESRI 2010).
Semivariograms were used in an autocorrelation analysis in
order to evaluate the spatial dependence of the values, and

Fig. 1: Location of Guangrong region, Hailun city and Heilongjiang
province, northeast China.
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best-fit models were optimized to predict SOM (Oliver et
al. 2000). Semivariograms were calculated according to the
formula: γ(h) = 1/2N(h) Σ[z(x

i
 + h) -z(x

i
)]2 (Isaaks &

Srivastava 1989), where γ(h) is the experimental
semivariogram value at distance interval h, N(h) is the
number of sample pairs within the distance interval h and
z(x

i
), z(x

i
 + h) is the sample value at two points separated by

the distance interval h. The ordinary Kriging algorithm was
used to create an interpolated grid for development of
isarithmic maps of SOM. Since the distribution of SOM
values based on the 448 sample points were transformed by
the logarithm method to normally distributed in nine groups
(0.015, 0.025, 0.037a, 0.037b, 0.074a, 0.074b, 0.074c, 0.074d
and 0.074e), Kurtosis and skewness values were then used
to determine the goodness of fit to a normal distribution.
Kurtosis values of SOM were close to 3, and skewness val-
ues were close to 0. Anisotropic analysis indicated that the
average semivariance of SOM between 0° (north-south) and

90° (east-west), or between 45° (northeast-southwest) and
135° (southeast-northwest) were closer at the same separa-
tion distances, and K(h) (the ratio of average semivariance
0° to 90°, or 45° to 135°) values were close to “1” in groups.
By this measure, SOM can be considered as isotropic in the
study area at the group level, and the results were reported
(Zhang et al. 2011). The coefficient of determination provides
an indication of how well a model fits variogram data, but
this value does not serve as well as the residual sum of squares
(RSS) value for best-fit calculations involving changes in a
model parameter. The lower the RSS, the better the model
fits (Table 2). A Gaussian model was selected as the best for
predicting SOM in the nine groups, and cross-validation
method with R2 (Regression coefficient) showed the
estimated values fit well with the actual values.

The Gaussian isotropic model can be depicted as follows:

2 2
0 0( ) 1 exp( / )h C C h Aγ  = + − − 

Where h = lag interval, C
0 
= nugget variance ≥ 0, C =

structure variance ≥C
0
, and A

0 
= range parameter.

After interpolation by ordinary Kriging in nine groups,
SOM values were classified into five classes (very insuffi-
cient, insufficient, sufficient, rich and very rich are repre-
sented by <30 g/kg, 30-40 g/kg, 40-50 g/kg, 50-60 g/kg,
>60 g/kg, respectively) according to the SOM classification
system of Heilongjiang province.

LANDSCAPE INDICATORS

Number of patches (NP): Equals the number of patches hav-
ing the same class metrics.

Total area (TA): Equals the total area of all patches having
the same class metrics.

Total perimeter (TP): Equals the perimeter of all patches
having the same class metrics.

Largest patch index (LPI): Equals the area of the largest
patch divided by total area having the same class metrics,
multiplied by 100 (to convert to a percentage).

Shape index (SHAPE-MN): It corrects for the size prob-
lem of the perimeter-area ratio index by adjusting for a square
(or almost square) standard and, as a result, is the simplest
and perhaps most straightforward measure of overall shape
complexity.

min
ij

ij

P
SHAPE

p
=

ijp equals the perimeter (m) of patch ij.

Patch cohesion index (COHESION): It measures the physi-

Table 1: Soil physical and chemical properties in the watershed.

Soil Organic Bulk Total Field Saturated Withering
Depth Matter Density Porosity Capacity Water Moisture

Content
cm g/kg g/cm % w/w, % w/w, % w/w, %

0-20 42.1 1.27 52.1 24.4 42.3 12.1
20-40 28.4 1.19 55.1 24.4 44.2 13.4
40-60 18.6 1.21 54.3 23.4 43.6 14.2

Fig. 2: Distribution of sample sites and groups classification
in the study area.
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cal connectedness of the corresponding patch type. Patch co-
hesion increases as the patch type becomes more clumped or
aggregated in its distribution; hence, more physically con-
nected.

1
1

1
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n
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ijp equals the perimeter of patch ij in terms of number
of cell surfaces. ija equals the area of patch ij in terms of
number of cells. Z equals the total number of cells in the
landscape. Landscape indicators were calculated by the soft-
ware Fragstats 3.0 (Mc Garigal et al. 2012).

RESULTS

SOM spatial distribution under sample-grids of 0.015 km2

and 0.025 km2: SOM spatial distribution trends were similar
between the 0.025 and 0.015 resolutions, and SOM was
higher in most of the areas in the west, then declined in an
easterly direction, with some variations (Fig. 3). The TA of
40-50 g/kg in 0.015 or 0.025 was largest, and the areas of 60
g/kg>SOM> 40 g/kg accounted for 88% and 87% of the
study area in 0.015 and 0.025, respectively. Both NP and TP
for 40-50 g/kg in 0.015 and 50-60 g/kg in 0.025 were the
largest classes. Both LPI and COHESION for 40-50 g/kg
were the largest in the 0.025 and 0.015 classes. SHAPE-MN
for 50-60 g/kg in 0.015 and 40-50 g/kg in 0.025 were larg-
est among classes of SOM content.

SOM spatial distribution under sample-grid of 0.037 km2:
SOM spatial distribution in the 0.037 km2 resolution (Fig.
4a and 4b) differed from that of 0.015 km2, and was also
different between 0.037a and 0.037b. SOM was higher in
the southwest, northwest and middle area of the western re-
gion in 0.037a, while SOM was higher in northeast and mid-
dle area of the western region in 0.037b (Fig. 4). The TA of

40-50 g/kg was largest in the 0.037a group and 1.5 times
larger than that in 0.015. As well, 50-60 g/kg was largest in
the 0.037b group and covered 61.5% of the area of 0.015.
The area of 60 g/kg>SOM> 40 g/kg accounted for 96% and
99% of the study area in 0.037a and 0.037b, respectively.
Both the NP and TP of 40-50 g/kg in 0.037a and of 50-60 g/
kg in 0.037b were larger. Both LPI and COHESION were
the largest in group 40-50 g/kg 0.037a and 0.037b. SHAPE-
MN was largest in the group 30-40 g/kg in 0.037a and in the
40-50 g/kg in group of 0.037b.

SOM spatial distribution under sample-grid of 0.074 km2:
SOM spatial distribution trends varied among groups under
the 0.074km2. SOM was greater in the north and middle ar-
eas in 0.074a, and greater in the northwest and middle areas
in 0.074b, the west edge region in 0.074c, the western area
in 0.074d, and in the southwest area in 0.074e (Figs. 5a, b, c,
d and e). TAs of 40-50 g/kg was largest in classes 0.074a,
0.074b, 0.074c, 0.074d and 0.074c, respectively, and the area
of 60 g/kg >SOM> 40 g/kg accounts for 100%, 100%, 94%,
100% and 89% of the study area in 0.074a, 0.074b, 0.074c,
0.074d and 0.074c, respectively. Both NP and TP of 50-60
g/kg were largest in 0.074a, 0.074b and 0.074c, and 30-40
g/kg was the largest group in 0.074c, while NP was larger in
40-50 g/kg and TP was larger in 50-60 g/kg. Both LPI and
COHESION of 40-50 g/kg were largest in classes 0.074a,
0.074b, 0.074c and 0.074e, while 50-60 g/kg was largest in
class 0.074d. SHAPE-MNs of 40-50 g/kg was largest in
classes 0.074b, 0.074c, 0.074d and 0.074e, while 50-60
g/kg was larger in 0.074a.

DISCUSSION

Soil nutrient spatial distribution was studied frequently in
recent years, and the results were applied to fertility evalua-
tion, formulated fertilization, regional nutrient management
and so on. Generally, soil nutrient distribution was often
simulated by geostatistical methods (interpolated by ordi-
nary Kriging) (Wu et al. 2003, Liu et al. 2006, Sauer et al.

Table 2: Geostatistical parameters in data groups.

Group Resolution Resolution Data C0 C0+C A0(km) C0/C0+C Model RMSE R2

name  (km2) (448) (m×m)  group

0.015 0.015 (269) 122×122 1,2,3,4,5 0.035 0.160 7.1 0.22 Gaussian 2.6E-05 1.02
0.025 0.025 (179) 158×158 1,3,5 0.147 0.294 7.1 0.50 Gaussian 8.0E-04 0.89
0.037a 0.037 (179) 192×192 1,4 0.036 0.272 6.9 0.13 Gaussian 2.6E-04 0.88
0.037b 0.037 (90) 192×192 2,5 0.162 0.395 7.1 0.41 Gaussian 4.8E-04 0.69
0.074a 0.074 (90) 272×272 1 0.045 0.090 7.1 0.50 Gaussian 1.6E-04 0.66
0.074b 0.074 (90) 272×272 2 0.047 0.277 7.1 0.17 Gaussian 3.3E-04 0.91
0.074c 0.074 (90) 272×272 3 0.061 0.138 7.1 0.45 Gaussian 2.9E-04 0.76
0.074d 0.074 (89) 272×272 4 0.101 0.202 7.1 0.50 Gaussian 1.1E-03 0.82
0.074e 0.074 (89) 272×272 5 0.082 0.518 6.7 0.16 Gaussian 6.5E-04 0.89

R2 (Regression coefficient)
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2006, Wei et al. 2006, Zhang et al. 2011, Fu et al. 2013, Liu
et al. 2013). Before interpolation, the scatter of sample points
should be uniformly spatially distributed, and the data need
to fit to a normal distribution and second order stationary
hypothesis. If the data do not fit to normal distribution, it
should be converted by algebraic methods (ESRI 2010). In
the study, Gaussian models were recognized as the best to
predict SOM spatial distribution in all groups (Table 2). The
proportion of the spatial structure (Nugget/sill, N/C) of
<0.25, 0.25-0.75, and >0.75 can be used to describe strong,
moderate and weak spatial autocorrelation, respectively
(Zhang et al. 2007, Cambardella et al. 1994). Geostatistical
results indicate that spatial autocorrelation as influenced by
structure factors (e.g. climate, topography and so on) were

moderate for 0.025 (0.50), 0.037b (0.41), 0.074a (0.50),
0.074c (0.45) and 0.074d (0.50), and strong for 0.015 (0.22),
0.037a (0.13), 0.074b (0.17) and 0.074e (0.16), respectively.
Also, the relatively shorter autocorrelation distances (A

0
) in

groups were all close to 7 km under resolutions. These can
conclude that sample resolutions can influence the analysis
results of the spatial autocorrelations of SOM, but can not
change the autocorrelation distances (A

0
) which maybe

mainly influenced by extent (research area). Generally, the
interpolation maps by ordinary Kriging were similar between
0.015 and 0.025 (Fig. 3), and differed from 0.037a, 0.037b,
0.074a, 0.074b, 0.074c, 0.074d and 0.074e (Figs. 4 and 5).
This indicates that a sample-grid ≤ 0.025km2 was the best to
fit to evaluate SOM spatial distribution in this watershed if
the sample-grid method was adopted in a mollisol water-
shed of northeast China.

In the study area, the ranges of SOM contents were dif-
ferent when soil samples were grouped randomly. The value
range of SOM content was largest in the 0.015 and 0.037b
(221.7 g/kg), and was lowest in the 0.074c (53 g/kg), while
the means of SOM (47.0 g/kg to 51.1 g/kg) were closer in
each group (Table 6). Especially, the SOM means of 0.025
and 0.037b were close to that of 0.015, as well as standard
deviation (SD) of 0.025 and 0.074d were close to that of
0.015, which also indicates that a sample-grid ≤0.025km2

was the best to fit to evaluate SOM spatial distribution in
this watershed if the sample-grid method was adopted in a
mollisol watershed of northeast China.

At the same time, landscape indicators were also very
effective to analyse the various spatial distribution of SOM
under different resolutions. The areas of 60 g/kg>SOM> 40
g/kg account for 87% to 100% of the study area in all
resolutions, and there was big difference when resolutions
were different or soil sampling was different under the same
resolution (Tables 3, 4 and 5). NP, TA, TP, LPI, SHAPE-
MN and COHESION were different under different
resolutions, e.g., NPs were higher at 40-50 g/kg, 50-60 g/
kg, 50-60 g/kg and 40-50 g/kg in groups of 0.015, 0.025,
0.037a and 0.014b respectively, and were all lower at >60 g/
kg in groups of 0.015, 0.025, 0.037a and 0.014b, respectively.
TAs and COHESIONs were all higher at 40-50 g/kg in nine
groups, and were all lower at >60 g/kg in nine groups, but
the values in groups were different. NP, TA, TP, LPI,
SHAPE-MN and COHESION were also different under
groups in same resolution, e.g., in 0.074 resolutions, NPs
were higher at 40-50 g/kg, 50-60 g/kg, 30-40 g/kg, 40-50 g/
kg and 50-60 g/kg in groups of 0.074a, 0.074b, 0.074c,
0.074d and 0.074e respectively, and were all lower at >60 g/
kg in 0.074 resolution groups. TAs and COHESIONs were
all higher at 40-50 g/kg in nine groups except that in group
of 0.074d for COHESION, and were all lower at >60 g/kg in

Fig. 3: SOM spatial distribution under grain of 0.015 km2 and 0.025 km2.

Fig. 4: SOM spatial distribution under grain of 0.037 km2.
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nine groups, and the values in groups were different too.
However, both NP and TP of 40-50 g/kg or 50-60 g/kg in
resolutions were larger, and most of LPI and COHESION of
40-50 g/kg were the largest in all groups, which indicated
that the physical connectedness of the corresponding patch
type of 40-50 g/kg or 50-60 g/kg was strongest in space under
resolutions (Mc Garigal et al. 2012). SHAPE-MN showed
that the degree of shape complexity was different among the
data groups, and SHAPE-MN of 40-50 g/kg was greatest in
groups 0.025, 0.037b, 0.074b, 0.074c, 0.074d, 0.074e, and
50-60 g/kg in data group 0.037a. Generally, the nutrient level
of 40-50 g/kg in most resolutions was the most complex
shape in classifications (Mc Garigal et al. 2012). In the study
area, TA, LPI and COHESION of 0.015 resolution were

relatively close to 0.025 resolutions, which also indicated
that a sample-grid ≤ 0.025 km2 was the best resolution to
evaluate SOM spatial distribution in this watershed if a
sample-grid method was adopted. These results also proved
that the spatial pattern of SOM can be relatively well
represented by the soil sampling with sample-grid ≤0.025
km2, but can not be accurately predicted when sample-grid
is higher than 0.025km2.

In our study, soil sampling under different resolutions
or in groups under the same resolution had an influence on
the prediction of SOM spatial distribution by interpolating
method (ordinary Kriging), despite the fact that all data were
transformed by algebraic methods to fit a normal distribution,
and cross-validation method with R2 (Regression coefficient)

 

 

Fig. 5: SOM spatial distribution under grain of 0.074 km2.
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Table 6: Classical statistics parameters of SOM content in the watershed
after interpolation.

                                                                      SOM (g/kg)

Grain Data Mean Max Min SD Range
levels group

0.015 1,2,3,4,5 48.9 222.9 1.2 15.9 221.7
0.025 1,3,5 48.6 222.9 22.5 16.5 200.4
0.037a 1,4 50.3 147.6 24.6 14.5 123
0.037b 2,5 48.6 222.9 1.2 18.7 221.7
0.074a 1 49.5 86.6 26.8 13.2 59.8
0.074b 2 47.8 76.6 1.2 14.0 75.4
0.074c 3 47.0 80.3 27.3 11.6 53
0.074d 4 51.1 147.6 24.8 15.8 122.8
0.074e 5 49.4 222.9 22.5 22.6 200.4

Table 5: Landscape indicators of soil organic matter (SOM) in the 0.074
km2 resolution.

Groups SOM NP TA TP LPI SHAPE COHE-
(g/kg) (km2) (km) (%) -MN SION

30-40 0 0 0 0 0
0.074a 40-50 6 3.94 22606 31.6 1.41 99.76

50-60 5 2.55 35669 20.0 1.63 99.69
>60 0 0 0 0 0 0

30-40 0 0 0 0 0 0
0.074b 40-50 2 5.36 2954 78.3 1.69 99.96

50-60 5 1.43 17260 13.8 1.50 99.41
>60 0 0 0 0 0 0

30-40 3 0.36 10866 5.4 1.41 99.05
0.074c 40-50 1 4.66 397 72.8 2.31 99.96

50-60 2 1.38 7830 21.5 1.99 99.74
>60 0 0 0 0 0 0

30-40 0 0 0 0 0 0
0.074d 40-50 9 3.28 40562 40.0 1.64 99.66

50-60 7 2.87 43421 42.0 1.57 99.81
>60 0 0 0 0 0 0

30-40 1 0.6502 873 11.20 1.76 99.31
0.074e 40-50 1 4.10 484 70.71 2.44 99.95

50-60 6 1.05 34374 16.60 1.45 99.46
>60 0 0 0 0 0 0

points of soil sampling which should reflect the soil
characteristics, landscape, land use, and more information
in the study area.

CONCLUSIONS

Traditional statistics and geostatistical parameters together
with landscape indicators were useful to analyse SOM spa-
tial variability. Spatial autocorrelations as influenced by
human activities were moderate for groups 0.025, 0.037b,
0.074a, 0.074c and 0.074d and strong for 0.015, 0.037a,
0.074b and 0.074e. The relatively shorter autocorrelation
distances (A

0
) in groups were all close to 7 km under all

resolutions. SOM spatial distributions were similar between
the 0.015 km2 and 0.025 km2 resolutions, but were different
from other resolutions, despite that the data after transfor-
mation in group were close to normal distribution. Gener-
ally, a sample-grid ≤0.025 km2 was recognized as a better
resolution to predict SOM spatial variability by ordinary
Kriging interpolation if a sample-grid method was adopted
in the black soil region of northeast China, and the result
needs to be proved in other regions. The accurate predic-
tion of soil nutrient distribution was mainly determined by
the representative points of soil sampling, which should re-
flect through resolution of the entire environmental factors
in the research area.
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