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ABSTRACT

Performance of four types of functionally different artificial neural network (ANN) models,
namely Feed forward neural network, Elman type recurrent neural network, Input delay
neural network and Radial basis function network was examined in order to identify an
efficient ANN architecture that can simulate the water table fluctuations using a relatively
short length of groundwater level records. Due to inherent advantages, Levenberg
Marquardt algorithm (trainlm) has been used in the present study. The town Tirupati,
located in Chittoor district of the drought-prone Rayalaseema region of Andhra Pradesh
having resident population of over 3.0 lakhs and pilgrims of over 50,000 per day was
chosen as the study area as its groundwater levels showed a rapid decline in the last
decade due to overexploitation for the domestic, agricultural and industrial needs.
Accurate prediction of groundwater levels will help the administrators to plan better the
groundwater resources. Results show that accurate predictions can be achieved with
Feed Forward Neural Network trained with training algorithm Levenberg-Marquardt
with the available shorter length data.

INTRODUCTION

Artificial Neural Network (ANN) technique has recently attracted considerable attention in all branches
of engineering and science. ANN offers the distinctive ability to learn complex nonlinear relation-
ships without requiring the mechanistic knowledge about the underlying systems. Ability to learn a
complex nonlinear relationship with limited prior knowledge of the system structure and performing
inferences for an unknown combination of input variables are some of its advantages. Therefore, it
has a great potential in areas such as hydrological systems where complex, dynamic and highly
nonlinear mechanisms are the norm. ANNs are used for rainfall-runoff modelling, precipitation fore-
casting, stream flow prediction, groundwater modelling, water quality modelling, water manage-
ment, reservoir operations and other hydrologic applications (ASCE 2000a, b, Coulibaly et al. 2001a,
b, c, Ioannis et al. 2004, Nayak et al. 2005). In this study, an attempt has been made to compare the
performance of four types of functionally different ANN models that can best simulate the groundwater
levels.

Groundwater is one of the most valuable natural resources possessed by many developing coun-
tries, as it is reliable in dry seasons or droughts, cheaper to develop, requires little treatment, can be
tapped where it is needed and is less affected by catastrophic events. In the more arid areas, where
rainfall is low and less predictable, groundwater may be the only source of supply for all types of
activities. Without pro-active management and protection, there is a serious risk of deterioration on
an increasingly widespread basis. Under the pressure of the need to rapidly develop new water sup-
plies, there is rarely adequate attention to, and investment in, the maintenance, protection and longer-

 2009 pp. 429-436Vol. 8 No. 3Nature Environment and Pollution Technology
An International Quarterly Scientific Journal

Key Words:
Neural Network
Groundwater level
forecasting
Evapotranspiration
Tirupati mandal

Original Research Paper



430 P. Sujatha and G.N. Pradeep Kumar

Vol. 8, No. 3, 2009 • Nature Environment and Pollution Technology

term sustainability of groundwater. In this context, a reliable water supply planning policy necessi-
tates accurately acceptable predictions of groundwater level fluctuations. This generally requires a
longer data of water table depth measurements, which are usually unavailable. Therefore, a common
approach is to use empirical time series models as described by Box & Jenkins (1976) and Hipel &
McLeod (1994) to generate a longer time series of water table depths. Unfortunately, a major disad-
vantage of empirical models is that they are not adequate for making predictions when the dynamical
behaviour of the hydrological system changes with respect to time (Bierkens 1998). In general, rela-
tionships between the precipitation, the nearby surface water and the groundwater are nonlinear.
However, owing to the difficulties of identifying nonlinear model structure and estimating the asso-
ciated parameters, only very few nonlinear empirical models, such as stochastic differential equation
and threshold autoregressive self-exciting open-loop models, have been recently proposed for shal-
low water table modelling (Bierkens 1998, Knotters & De Gooijer 1999). Alternatively, one can
resort to physical models (Belmans et al. 1983, Feddes et al. 1988). But, in practice, the data require-
ments to simulate water table fluctuation are enormous and generally difficult. Hence, it is not af-
fordable for developing countries. Therefore, a dynamical predictive model that can cope with the
persistent trend and time-varying behaviour of the aquifer system is very desirable for improved
water resources management and reliable water supply planning.

MATERIALS AND METHODS

In its most general form, an ANN is a machine that is designated to model the way in which the brain
performs a particular task. The network is implemented using electronic components or simulated in
software on a digital computer. To achieve good performance, ANNs employ a massive interconnec-
tion of neurons. The manner in which the computation performed at one layer is passed to the next
layer is called network architecture. Feed forward neural network, Elman type recurrent neural net-
work, Input delay neural network and Radial basis function network are some of the widely used
ANN architectures.

A feed forward neural network consists of an input layer, one or more hidden layers and an output
layer. Fig. 1a shows a typical feed forward network with one hidden layer consisting of five nodes,
an input layer with four nodes and an output layer with one node. In this network input variable
values are fed through neurons into the input layer. The hidden layer neuron collects each input
value, multiplies it by a connection weight, sums up such weighted inputs together, attaches a bias
value and passes on the result through a non-linear function to the output layer. Standard sigmoidal
function is employed by a Feed forward neural network. The resulting value is fired out through
output neuron. The main advantage of feed forward neural networks is that they are easy to handle,
and can approximate any input/output map (Hornik et al. 1989), but they train slowly.

Elman network is a two-layer network with feedback from the first layer output to the first layer
input and allows both to detect and generate time-varying patterns. Fig. 1b shows a typical Elman
type recurrent neural network consisting of an input layer with five nodes, a hidden layer with five
nodes, a context layer with five units, and an output layer with one node. Each input unit is connected
to every hidden unit. There are one-by-one downward connections between the hidden nodes and the
context units leading to an equal number of hidden and context units. The recurrent connections
allow the hidden units to recycle the information over multiple time steps and thereby to discover
temporal information contained in the sequential input and relevant to the target function.  Thus, the
Elman network has an inherent dynamic memory provided by the context units in its recurrent con-
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nections. The output of the network depends on the connection weights, current input signal and on
the previous states of the network.

Input delay neural network consists of a memory structure and a nonlinear associator (Fig. 1c).
Memory structure is a time delay line while the associator is conventional feed forward network with
one hidden layer and one output layer. It holds onto the relevant past information and the associator
uses the memory to predict future events.

Radial basis function networks are nonlinear hybrid networks containing a single hidden layer of
computation nodes. These networks have a static Gaussian function as the nonlinearity for the hid-
den layer processing elements. Fig. 1d shows the network consisting of a hidden layer of R nodes,
r inputs and one output. Net input to the hidden layer is the vector distance between its weight vector
w and the input vector p, multiplied by the bias b. Success of these networks is to find suitable centres
for the Gaussian functions. The advantage of this network is that it finds the input to output map
using local approximators. While developing an architecture, an algorithm plays an important role.
Traingd, Traingdm, Traingda, Traingdx, Trainrp, Traincgf, Traincgp, Traincgb, Trainscg, Trainbgf,
Trainoss, Trainlm, Trainbr and Trainr are the often used algorithms in the model development.  In the
present study, due to inherent advantages, Levenberg-Marquardt (Trainlm) algorithm is used.

  Fig. 1a: Feed forward neural network.
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Fig.1b. Elman type recurrent neural network.

Fig.1c. Input delay  neural network with p memory order. Fig.1d. Radial basis function network.
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STUDY AREA AND DATA

All the four architectures are tested with data taken from observation wells located in Tirupati. Fig. 2
shows the area of the study. Tirupati is world renowned pilgrim centre, connected to various parts of
the globe through railways, roadways and airways. It has a static population of more than 3.0 lakhs in
an area of 110 km2, in addition to a daily pilgrimage of 50,000 to 60,000. This figure touches to 1.0
lakh during summer vacation and Brahmotshavams. The climate of Tirupati, on the whole, is dry.
December to February is dry and cool. March to May is summer followed by the southwest monsoon
from June to September. October to November is the post monsoon retreating period. The annual
mean rainfall is 700 mm, whereas the annual temperature ranges from 18°C to 42°C. Geologically,
Tirupati region is covered by granites and dyke rocks of Archean age overlain by recent alluvium
deposits of 10-25 m thick. Most of the hill streams originating from the Sapthagiri hills to the north
of the city exhibit a dendritic pattern. All the streams are ephemeral.

The pace of urban development and the rapid increase in population of Tirupati town, which
started in the 1980s, has led to the depletion of surface and groundwater resources. The large number
of visitors with their additional demands for water has further aggravated the problem of water scar-
city. Available surface water resources from the Kalyani dam and Telugu ganga is not adequate to
cope up with the needs. Further, due to successive failure of monsoons, water supply from borewells
has become an important resource. Heavy dependence on groundwater has resulted in increasing
numbers of wells and boreholes necessitating the administrators to predict the groundwater levels
reliably with the available data of shorter length to plan for the demands of the future. Hence, four

Fig.2: Location of the study area.
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different types of neural network architectures are examined to determine the network that is best
suitable to predict the water table fluctuations for the observation wells located in Tirupati.

MODEL DEVELOPMENT

Input variable selection: In order to develop a suitable neural network for predicting the groundwater
levels, appropriate assignment of past values of inputs to input nodes is required. Basically, the
crucial process of developing a predictive model is to identify the input variables among the avail-
able variables for each output variable. Generally, sensitivity analysis is carried out to assess the
relative significance of each input variable. A glance at the past work (Coulibaly et al. 2001a, Ioannis
et al. 2004, Nayak et al. 2005) indicates that past precipitation data, minimum, maximum and mean
temperatures, stream flow and groundwater level data alone were considered as inputs. In the present
study, precipitation and past groundwater levels for the period 1999 to 2006, along with
evapotranspiration data were selected as input variables. Evapotranspiration data were included as
input variables to improve the model performance. FAO Penman-Monteith method was used for the
estimation of evapotranspiration. Identified input variables for the observation wells located in Tirupati
are R(t-1), R(t-2), GWL(t-1), GWL(t-2) and ET(t-1) where R is rainfall data and GWL is groundwater
levels and ET is evapotranspiration, t-1 and t-2 are data pertaining to 1 and 2 lag time steps  respec-
tively. Data used for training the network are normalized to remove the cyclicity. Variables were
scaled between –1 and 1. Number of hidden neurons in the proposed network was determined by
several trails. It was started with two hidden neurons initially and the number of hidden neurons was
increased up to 20 with a step size of one in each trial. Learning rate and momentum factors were so
selected that they are responsive to the complexity of the local error surface. For each set of hidden
neurons, network was trained with different architectures in batch mode to minimize the mean square
error at the output layer. Training was stopped when there was no significant improvement in the
efficiency, and then model was tested for its generalization properties. Optimum number of hidden
neurons was found to be 5. A tansigmoidal function was used as the activation function in both
hidden and output layers for Feed forward network, Elman type recurrent network and Input delay
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network except for Radial basis function network. Predicted groundwater level is treated as output
variable. Therefore, the proposed model has 5 input nodes with a single input layer, five hidden
nodes with a single hidden layer and one output node in the output layer for all the networks studied.

PERFORMANCE OF THE MODEL

Using the error estimating  functions, such as Correlation Coefficient (R2), Average Absolute Rela-
tive Error (AARE) and Root Mean Square Error (RMSE), the effectiveness of each network is tested.
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Where xi is the observed groundwater level for ith month, yi is the forecasted groundwater level,
( )ix x−  is deviation of observed groundwater level from its mean, ( )iy y−  is deviation of forecasted
groundwater level from its mean and n is the number of observations.

RESULTS AND DISCUSSION

Once the architecture of the model was optimized (i.e., 5 input nodes, 5 hidden nodes and 1 output
node), the selected inputs R(t-1), R(t-2), GWL(t-1), GWL(t-2) and ET(t-1)  were fed into the MATLAB
7.0 environment with Feed forward network, Elman type recurrent network, Input delay network and
Radial basis network for the proposed model. For training the model, data pertaining to the period

Table 1:  R2, AARE and RMSE for the observation well in Tirupati.

Model                                                                       Training                                                       Testing

R² AARE RMSE R² AARE RMSE

Feed Forward Neural 0.998 1.180469 0.24585 0.966 3.378442 1.271485
Network with trainlm
Elman Type Recurrent 0.998 1.187832 0.259775 0.935 4.340135 1.342292
Neural Network
Input Delay Neural Network 0.998 1.162424 0.259749 0.947 3.924771 1.322815
Radial Basis Function Network 1.000 0.049615 0.02626 0.697 6.99177 2.336718
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between 1999 and 2004 (360 readings) were used. Model was tested using data pertaining to the
period between 2005 and 2006 (120 readings). Efficiencies of the models were then tested using R2,
AARE and RMSE, and the values are listed in Table 1.

During training, it is observed that the correlation coefficient R2 values were 0.998 for Feed
forward network, Elman type recurrent network, Input delay network and 1.000 for Radial Basis
function network. The AARE values were computed as 1.180469 for Feed forward network, 1.187832
for Elman type recurrent network, 1.162424 for Input delay network, and 0.049615 for Radial basis
function network. The RMSE were computed as 0.24585m for Feed forward network, 0.259775m
for Elman type recurrent network, 0.259749m for Input delay network and 0.02626m for Radial
basis function network. The values of R2 suggest that all the four models were able to train the
network effectively. The lower values of AARE and RMSE also indicate that all the four models
were able to forecast the groundwater levels efficiently during training.

During testing, R2 was 0.966 for Feed forward network, 0.935 for Elman type recurrent network,
0.947 for Input delay network, and 0.697 for Radial basis function network. Similarly, AARE values
were determined for all the four networks as 3.378442, 4.340135, 3.924771 and 6.99177 respec-
tively. RMSE values were computed as 1.271485m, 1.342292m, 1.322815m and 2.336718m respec-
tively. Values of R2, AARE and RMSE suggest that Feed forward network showed the best perform-
ance in simulating the observed groundwater levels among the networks studied. The next best per-
formance was observed by Input delay network followed by Elman type recurrent network.    In
contrast, Radial basis function network was unable to predict the groundwater levels efficiently dur-
ing the testing period. This suggests that the Radial basis networks may not be suitable for water
table modelling based on short length calibration data. Radial basis networks are very sensitive to the
presence of noise in the data and this could be the reason for this network to perform poorly in
predicting the groundwater levels. These observations suggest that Feed forward network trained
with training algorithm ‘Levenberg-Marquardt’ showed best performance in predicting the
groundwater levels with data of relatively shorter period for the observation wells located in Tirupati.

Fig. 3 shows the forecasted groundwater levels and observed groundwater levels during testing
period. It is clear that groundwater levels computed by the models Feed forward network, Elman
type recurrent network and Input delay network are in good agreement with those of the observed
groundwater levels. However, deviation is noticed in the values of groundwater levels computed by
Radial basis function network with the observed groundwater levels.

CONCLUSION

In countries like India where vast area depends largely on groundwater resources, non-availability of
groundwater level records for sufficient period has been the main hindrance in developing a model
for prediction of realistic groundwater levels. In this paper an attempt was made for more realistic
prediction of groundwater levels with the data of shorter period for the observation wells located in
Tirupati, Chittoor district using ANN. Four different network architectures namely Feed forward
network, Elman type recurrent network, Input delay network and Radial basis function network were
studied to detect the more efficient network architecture. The results suggested that Feed forward
network trained with training algorithm ‘Levenberg-Marquardt’ was effective in predicting the
monthly groundwater levels. Predicted results using a neural network are in good agreement with
values of observed groundwater levels and represent the dynamic characteristics of the given system
very well.
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