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ABSTRACT
Leaf area index (LAI) is one of the most basic parameters to characterize the vegetation canopy
structure, and is widely used in monitoring crop growth, yield estimation and other fields. Therefore,
accurate estimation of LAI has great significance for agricultural precision fertilization and protecting
agricultural ecological environment. However, few studies have attempted to estimate LAI of winter
wheat using the continuous wavelet analysis (CWA), particularly at different growth stages. This
paper aims at studying the spectral estimation of LAI by applying CWA into canopy spectra of 190
samples observed at Guanzhong Plain in China. Two partial least square regression (PLSR) models
using six wavelet features and the optimal spectral indices were constructed and compared
respectively. Results indicated that the model using wavelet features combination had a considerable
improvement than the spectral indices combination for the whole validation dataset. When the validation
dataset was separated according to the growth stage, the predictive performance of the wavelet
features combination performed well at both growth stages, while the spectral indices combination
had not achieved the same effect. The results showed that CWA approach could derive more robust
wavelet features to growth stage variation, and wavelet features were more effective than the
spectral indices for predicting LAI of winter wheat at different growth stages.
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INTRODUCTION

Leaf area index (LAI) is defined as a projected green leaf
area per unit ground surface area (Watson 1947, Chen &
Black 1992). It is one of the key variables used by crop
physiologists and modellers for estimating foliage cover, as
well as monitoring and forecasting crop growth, biomass
production and yield (Dorigo et al. 2007, Casa et al. 2012).
Therefore, accurate monitor of LAI is of great significance
for the precise agriculture fertilization, which can effectively
avoid the gradual decline of ecological environment caused
by the excessive inputs of chemical fertilizer.

Several approaches have been proposed to estimate LAI
using remote sensing technology. Essentially, these retrieval
approaches can be classified into two groups (Le Maire et
al. 2008, Zheng & Moskal 2009). (i) Empirical retrieval
methods, which typically consist of relating the biophysical
parameter of interest against spectral data through linear or
nonlinear algorithmic techniques (Broge & Mortensen 2002,
Verrelst et al. 2012). Due to the simple application and data
process, vegetation indices (VIs) are widely used for moni-
toring various crop biophysical parameters (Hatfield &

Prueger 2010). However, this method strongly depends on
canopy structure, leaf biochemical properties, vegetation
type and soil background (Jacquemoud et al. 1996), so it is
difficult to design a vegetation index applicable to all con-
ditions. (ii) Physically-based retrieval methods, which de-
scribe the transfer and interaction of radiation inside the
canopy based on physical laws and provides an explicit
connection between the biophysical variables and the
canopy reflectance (Li & Strahler 1986, Propastin & Erasmi
2010). They have the well-founded physical basis and higher
retrieval accuracy (Jacquemoud et al. 2000). However, these
methods are computationally intensive and also need many
input parameters, meanwhile, some parameters are difficult
to obtain, which limits the widespread application (Combal
et al. 2002). Therefore, some new spectral analytical tech-
nologies need to be developed.

Recently, continuous wavelet analysis (CWA) is emerg-
ing as a promising technology in spectroscopy for deriving
biochemical constituent from vegetation reflectance spectra
(Blackburn 2007, Cheng et al. 2011). It has the merit of
decomposing the spectra data into a number of scales that
can capture useful spectral information (Luo et al. 2013,
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Cheng et al. 2014). Several studies have already demon-
strated the benefits of CWA for vegetation classification
(Henry et al. 2004, Koger et al. 2003), quantifying leaf water
content with a wider variety of species (Cheng et al. 2011,
Cheng et al. 2012), quantifying leaf chlorophyll concentra-
tion (Blackburn  & Ferwerda 2008) and estimating canopy
water content using the airborne imaging spectroscopy data
(Cheng et al. 2014). However, as we understand, few studies
have attempted to estimate LAI of winter wheat using the
CWA, particularly at different growth stages. Therefore, a
research on the estimation of winter wheat LAI by using
CWA method to extract spectral information still needed to
be studied.

The study focuses on the retrieval of LAI by using CWA
method to the canopy spectra of 190 winter wheat samples
at two different growth stages and tests the robustness of the
wavelet features to growth stage variation. We sought to
answer two questions: (1) What are the optimal wavelet fea-
tures (at particular scales and positions) that provide the
greatest sensitivity to LAI? (2) Does the CWA approach
outperform the traditional spectral index approach to
estimate LAI?

MATERIALS AND METHODS

Study area: The study area (34°16’ N, 108°04’ E) is located
at the Yangling National Agricultural Demonstration Zone
of Shannxi province, China. It is situated at the centre of the
Guanzhong Plain, which is one of the most important farm-
land areas and a key national base for agricultural products
in China. It covers an area of 34000 square kilometres, with
the average elevation of 500 m. It has a monsoon climate
with a hot summer and a cool winter, the mean annual tem-
perature is 12.9°C, and the mean annual precipitation is
635.1 mm with marked seasonal variations (Xu & Gao 2014).
During the crop growth period from November to June next
year, winter wheat is the main crop types in the area (Shun et
al. 2013).

Two field measurements were conducted at the growth
cycle of winter wheat in 2013, one at the jointing stage from
March 31 to April 1, 2013, the other at the grain filling
stage from May 27 to May 28, 2013. Juliang, Xinglin and
Rougu are selected as the three core experiment sites in
Yangling. Sample sites were selected at the areas that the
soil and canopy conditions were fairly homogeneous on
scales of tens of meters. The coordinate of each sample site
was recorded on the ground with a handheld differential
Global Positioning System (GPS) (Trimble 332, USA). The
winter wheat canopy spectral and LAI were collected at each
sample site. After removing the missing data and the
abnormal data, 190 valid samples were collected at the two

experiments, among them 76 in jointing stage and 114 in
grain filling stage. At each stage, samples were split into
two parts, half of the samples were used for models
calibration, and the remaining samples were used for models
validation.

Canopy hyperspectral measurements: Canopy spectra
were collected in clear sky conditions by using ASD
Fieldspec FR spectrometer (ASD, Boulder, USA) between
10:00 a.m. and 14:00 p.m. in local time (GMT+8). The cir-
cular probe was kept around 0.5 m vertically above the
canopy. Before the canopy spectra were collected, the in-
strument was optimized and calibrated with a white panel
(99% reflectance). In order to reduce the effect of instru-
ment noise to the spectrum measurement, canopy spectra
were measured 10 times at each sample site.

LAI measurements: The winter wheat LAI was measured
with a LAI-2000 (LI-COR, Lincoln, NE) plant canopy ana-
lyser, which compares the above and below canopy light
levels detected in five conical rings to infer LAI and charac-
teristics of canopy architecture (Welles & Norman 1991).
When measurements were conducted, the sun was kept be-
hind the operator and a 45° cap was used on the LAI-2000
in order to avoid the effect of direct sunlight. For each sam-
ple, an above-canopy reading and four below-canopy re-
cordings were collected for LAI calculation, the data were
programmed to average four observations into a single LAI
at each site.

Preprocessing and normalization of spectral reflectance
data: To eliminate the noise effect in the data, firstly, the
spectral data were smoothed by using a weighted mean
moving average over a 5 nm sample (Savitzky & Golay
1964). It was found that this method gave the reflectance
data sufficient smoothing without loss of fine spectral detail
information (Smith et al. 2005). Due to the effect of strong
absorption by water vapour and weak spectral signal, we
selected 350~950 nm band that have a higher signal noise
ratio as the effective analysis data. In order to suppress the
possible difference of the illumination, we normalized all
the spectral curves by dividing the mean band reflectance
of the curve (Yu et al. 1999), the benefit of normalization
by eliminating spectral difference caused by the change of
illumination conditions had been demonstrated by Yu (Yu
et al. 1999).

Continuous wavelet transform (CWT): Wavelet analysis
is a promising method for processing hyperspectral signa-
tures and has been successfully applied to remote sensing
image processing to extract information from various scales
(Simhadri et al. 1998). The CWT can decompose a signal at
a continuum of positions, and the outputs from CWT are
more easily interpretable. In our paper, we used CWT to
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extract spectral information for the estimation of LAI.

CWT is a linear operation that uses a mother wavelet
function to convert a hyperspectral reflectance spectrum
into sets of coefficients at various scales. The main equations
are as below (Cheng et al. 2014, Bruce et al. 2001).
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coefficients. The CWT coefficients constitute a 2-dimen-
sional scalogram, in which one dimension is scale and the
other is wavelength. Previous studies have shown that the
shape of absorption features of vegetation was similar to a
Gaussian or quasi-Gaussian function (Torrence & Compo
1998). So the second derivative of Gaussian (DOG) was used
as the mother wavelet basis (Cheng et al. 2011, 2014,
Torrence et al. 1998). In this paper, there were only 601

spectral bands available, any scale greater than 29=512 was
discarded, because the wavelet power at higher scales did
not carry meaningful information.

Selection of wavelet features: Among the large amount of
wavelet features, the most significant ones were selected by
using the strategies put forward by Cheng (Cheng et al.

Spectral indices Acronym Formula Sourse 
 
Ratio vegetation index 

 
RVI 

 
670800 RR  

 
Baret et al. (1991) 

Normalized difference vegetation index NDVI    670800670800 RRRR   Rouse et al. (1974) 

Green normalized difference vegetation index GNDVI     550800550800 RRRR   Gitelson et al. (1996) 

Triangle vegetation index TVI    550670550800 10060 RRRR    Broge et al. (2001) 

Optimization of soil-adjusted  
vegetation index OSAVI    16.0670800670800  RRRR   Rondeaux et al. (1996) 

Modified soil-adjusted vegetation index MSAVI    



  670800

2
800800 81212

2
1 RRRR

 
 Qi et al. (1994) 

Enhanced vegetation index EVI    15.765.2 485670800670800  RRRRR   Liu et al. (1995) 

2-bands enhanced vegetation index EVI2    14.25.2 670800670800  RRRR   Jiang et al. (2008) 

Modified nonlinear vegetation index MNLI    5.05.1 670
2
800550

2
800  RRRR  Gong et al. (2003) 

Modified simple ratio MSR    11 670800670800  RRRR  Chen  (1996) 

Modified second triangular  
vegetation index MTVI2 

    
    5.05612

5.22.15.1

670800
2

800

550670550800





RRR
RRRR  

 Haboudanea et al. 
(2004) 

Three gradient difference vegetation index  TGDVI 
550670

550670

670800

670800

 




 RRRR  

 Tang et al.2003 

 

Table 1: Definitions of spectral indices involved in this paper.

Notes: here R is reflectance at wavelength  .

Fig. 1: Mean reflectance spectra at jointing stage and
grain filling stage.
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2014). The Pearson’s linear correlations were calculated be-
tween the wavelet power at each feature location and LAI
through calibration samples, then sorted the squared corre-
lation coefficient (R2) in the descending order. A cut-off
percentage threshold was applied to delineate the top 1%
features that correlated with LAI (Cheng et al. 2011, 2014,
Luo et al. 2013). These features formed a number of scat-
tered feature regions. The feature with the maximum R2

within each region was selected as the optimal wavelet fea-
tures and expressed as (wavelength in nm, scale).

Calculation of spectral indices: Four types of spectral
indices were used to compare with wavelet features, includ-
ing the simple ratio and difference vegetation index: Ratio
vegetation index (RVI), Normalized difference vegetation
index (NDVI), Green normalized difference vegetation in-
dex (GNDVI) and Triangle vegetation index (TVI).
Vegetation index that control soil influence: Optimization
of soil-adjusted vegetation index (OSAVI) and the Modi-
fied soil-adjusted vegetation index (MSAVI); the increased
atmospheric correction factor vegetation index: Enhanced
vegetation index (EVI) and 2-bands enhanced vegetation
index (EVI2); the modified vegetation index: Modified
nonlinear vegetation index (MNLI), Modified simple ratio
(MSR), Modified second triangular vegetation index (MTVI2)
and Three gradient difference vegetation index (TGDVI),
which led to a total of 12 spectral indices as given in Table 1.
All these spectral indices were tested in this paper.

RESULTS AND DISCUSSION

Variation of the LAI and spectral response in different
growth stages: Table 2 is the descriptive statistics of LAI at
two growth stages in 2013. The range of LAI was from 1.51

to 6.27 m2/m2 at jointing stage and 2.47 to 6.73 m2/m2 at
grain filling stage. The jointing stage LAI had a higher vari-
ation coefficient (26.8%) than the grain filling stage LAI
(18.9%). The average normalized reflectance of winter wheat
at the two different growth stages are shown in Figure 1,
from jointing stage to grain filling stage, the reflectance in
the visible (350~729 nm) regions increased and decreased
in the NIR (729~950 nm) regions.

Estimating LAI by using the spectral indices across the
datasets: A correlation analysis was calculated between the
four kinds of spectral indices and LAI. Both single and
multiple spectral indices were examined to calibrate the
predictive model. The model performance was assessed by
using the coefficient of determination (R2) and the root mean
square error (RMSE). Table 3 summarizes the R2, RMSE,
and significance level for each spectral index. All the 12
spectral indices passed the t-test and were significantly cor-
related with LAI (P < 0.001), with the R2 from 0.21 to 0.34.
After removing the non-significant spectral indices (p > 0.05)
in the multiple linear regression model, the nine optimal
spectral features were determined which were RVI, GNDVI,
MSR, EVI, MTVI2, EVI2, MNLI, TGDVI and TVI, and the
PLSR model combining with nine spectral indices were con-
structed. Here, we defined this model as PLSR model 1. As
given in Table 3, this model demonstrated a better accuracy
with a R2 of 0.57 and a RMSE of 0.75 m2/m2.

Estimating LAI by using the continuous wavelet analysis:
Six optimal wavelet features (Table 4) related to changes in
LAI were selected, and both single and multiple spectral
indices were examined to calibrate the predictive model.
Results indicated that all extracted features were
significantly correlated with LAI (p < 0.001), with the R2

Table 2: Descriptive statistics of LAI at two growth stages in 2013.

Growth period Samples Mean ± s.d. Min  Max Variation coefficient

Jointing stage 7 6 3.50±0.94 1.51 6.27 0.268
Grain filling stage 114 4.74±0.90 2.47 6.73 0.189
Two growth stages 190 4.24±1.10 1.51 6.73 0.259

Table 3: Coefficients of determination between LAI and spectral indices obtained from the calibration data (n=95).

Spectral indices Model type R2 RMSE Spectral indices Model type R2 RMSE

RVI Qua 0.28*** 0.96 NDVI Exp 0.32*** 0.97
GNDVI Pow 0.33*** 0.99 TVI Pow 0.21*** 1.07
OSAVI Exp 0.32*** 0.97 MSAVI Exp 0.33*** 0.97
EVI Exp 0.34*** 0.95 EVI2 Pow 0.32*** 0.97
MNLI Exp 0.33*** 0.96 MSR Qua 0.31*** 0.94
MTVI2 Exp 0.30*** 0.99 TGDVI Exp 0.33*** 0.96
Multivariate PLSR  0.57*** 0.75

Notes: Qua, Exp, Pow are models of quadratic, exponential and power respectively. Significance is: *p < 0.05, **p < 0.01, ***p < 0.001
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ranging from 0.46 to 0.60. The maximum correlation was
produced by the wavelet feature at 520 nm at scale 4 (R2 =
0.60) and the minimum by the wavelet feature at 447 nm at
scale 3 (R2 = 0.46). Feature (520 nm, 4) occurred on the left
shoulder of green peak, the green regions were identified as

having the best accuracy in estimating LAI (Nguy-Robertson
et al. 2014). The remaining features were all in the near-
infrared spectral region, this spectral region have a stronger
sensitivity to LAI and can make an efficient correction for
background influences (Houborg & Eva Boegh 2008). Then

Table 4: Coefficients of determination between LAI and wavelet features obtained from the calibration data (n=95).

Wavelet features                         Feature location Model type R2 RMSE

Wavelength(nm) Scale

WP447,3 447 3 Exp 0.46*** 0.84
WP520,4 520 4 Exp 0.60*** 0.75
WP804,4 804 4 Pow 0.54*** 0.79
WP810,3 810 3 Lin 0.52*** 0.79
WP842,5 842 5 Lin 0.48*** 0.83
WP902,4 902 4 Exp 0.50*** 0.82
Multivariate PLSR 0.70*** 0.62

Notes: Exp, Pow and Lin are models of exponential, power and linear respectively. Significance is: *p < 0.05, **p < 0.01, ***p < 0.001

Table 5: Results of the two PLSR models for the whole validation dataset and different growth stages.

Spectral metrics           Two stages        Jointing stage                                        Grain filling stage

R2 RMSE R2 RMSE R2 RMSE

Spectral indices 0.53 0.73 0.32 0.88 0.54 0.74
Wavelet features 0.68 0.60 0.61 0.64 0.56 0.61

 

 
Fig. 2: Plots of measured versus estimated LAI at jointing stage (A,D), grain filling stage (B,E) and two stages (C,F), using PLSR model 1

(A,B and C) and PLSR model 2 (D,E and F). The R2 and RMSE were obtained from the validation dataset.
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the PLSR model combining with six wavelet features were
constructed and produced the best accuracy, with a R2 of
0.70 and a RMSE of 0.62 m2/m2. Here, we defined this model
as PLSR model 2. The R2 showed that the wavelet features
performed better than spectral indices for the estimation of
LAI.

Prediction of LAI model using wavelet features and
spectral indices: When applying the two PLSR models to
the validation data, LAI were better predicted using PLSR
model 2 than PLSR model 1 at the two growth stages (Table
5). In order to evaluate the sensitivity of LAI models to
growth stage variation, the validation dataset were also di-
vided into jointing stage data and grain filling stage data.
Results indicated that the spectral metrics combination led
to slightly different predictive performance between growth
stages, with the predictive performance of PLSR model 2
(R2 = 0.61 and RMSE = 0.64 m2/m2 at jointing stage and R2

= 0.56 and RMSE = 0.61 m2/m2 at grain filling stage) and
PLSR model 1 (R2 = 0.32 and RMSE = 0.88 m2/m2 at jointing
stage and R2 = 0.54 and RMSE = 0.74 m2/m2 at grain filling
stage), and model 2 exhibited substantially better perform-
ance than model 1 at jointing stage. This is mainly because
the spectral signals were more easily influenced by back-
ground with a lower LAI at the jointing stage, and the CWA
method had the ability to remove the effects of background
spectral variation (Mittermayr et al. 2001). Moreover, the
variation coefficient of LAI is relatively larger at jointing
stage (26.8%) than at grain filling stage (18.9%). PLSR model
2 exhibited the similar estimation capability at the two
growth stages, but PLSR model 1 had a little poorer
performance at jointing stage comparing with grain filling
stage, this implied that wavelet features were more robust
than spectral indices to growth stage variation for estimat-
ing LAI at the two growth stages.

To make the comparison of results more visual, the scat-
ter plots of measured versus estimated LAI are shown in
Fig. 2. It was clear that PLSR model 2 made the points more
convergent to the line 1:1 than PLSR model 1 for the whole
validation dataset and the two growth stages, indicating
that the relationship between reflectance and LAI had been
improved by using the CWA method.

CONCLUSIONS

This study has demonstrated the efficiency of CWA in ana-
lysing canopy spectra and selecting features to the estima-
tion of winter wheat LAI at two growth stages. Using the
field samples from Guanzhong Plain, we extracted six wave-
let features and nine optimal spectral indices, then two PLSR
models based on these features were established and com-
pared respectively. Results showed the model combining

with six wavelet features (R2 = 0.68 and RMSE = 0.60 m2/
m2) produced promising accuracy in estimating LAI than
the model combining with nine optimal spectral indices (R2

= 0.53 and RMSE = 0.73 m2/m2). After partitioning the
validation dataset by growth stages, predictive performance
presented slight difference between growth stages. The
model based on wavelet features exhibited the similar
estimation capability at two stages, but the model based on
spectral indices had a poorer performance at jointing stage
comparing with grain filling stage, indicating that wavelet
features were more robust to the growth stage variation than
spectral indices for the estimation of winter wheat LAI,
particularly at different growth stages.

This study extended CWA methodology to the estima-
tion of winter wheat LAI at two different growth stages and
exhibited promising results. However, problems of agricul-
tural environmental pollution are increasingly serious due
to excessive use of fertilizers. Therefore, this paper had great
importance for monitoring crop growth, guiding agricul-
tural fertilizer scientifically, protecting agricultural
ecological environment and the construction of the national
precision agriculture.
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