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ABSTRACT
In this paper, we introduce a rating tax control model (RTCM) based on generalized Nash equilibrium
theory to deal with transboundary water pollution problem. Under RTCM, the more transfer of pollution,
the high should be paid in the presence of rating tax. We prove that the RTCM is equivalent to a
nonlinear program. With the help of generalized Clarke’s gradient, we give the optimality condition of
RTCM. Finally, we use a simple example to illustrate the validity of our results.
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INTRODUCTION

Transboundary pollution is the pollution that originates in
one region (or country) but is able to cause damage in an-
other region’s environment, by crossing borders through
pathways like water, for which pollution can be transported
across hundreds and even thousands of kilometres. This is
why it is called ‘transboundary pollution’. One of the prob-
lems with transboundary pollution is that it can carry pollu-
tion away from a heavy emitter and deposit it onto a nation
whose emissions are relatively low. Due to the fact that ‘all
things connect’, the heavy pollution that is evident in the
developed world also becomes evident in remote areas.

The amount and the deleterious effects of the
transboundary water pollution discharged from region cross-
ing borders is now well-documented (Bernauer & Kuhn
2010, Kulmatov et al. 2013). The need to prevent further
environmental damage due to increasing transboundary pol-
lution has led to various governmental legislation such as
the Helsinki Convention proposed in 1974, which is the
most widely known convention on the protection and use
of transboundary rivers and lakes, and the UN Watercourses
Convention introduced in 1997. The legislations are
stimulating the development of analytical frameworks for
both pollution control and of purification facilities
improvement.

Recently, pollution tax as a pollution reduction instru-
ment has received far more attention than wastewater purifi-
cation facilities control in both theory and practice. By study-

ing the tax competition problem in the presence of
transboundary pollution, Cremer & Gahvari (2004) con-
cluded that a harmonized emission tax at a level above the
unrestricted Nash equilibrium value would lead firms to
adopt less-polluting technology, and would also decrease
aggregate emission. Barcena-ruiz (2006) analysed a game
between two governments on whether to set environmental
tax sequentially or simultaneously depending on
transboundary pollution spillovers. Researchers mentioned
above focus on the economic analysis of transboundary pol-
lution between two regions only without considering the
geographical structure of the basin, the boundaries that sur-
round the basin and individual regions, or the nature of the
game between the central government and individual re-
gions. Yuzbasi et al. (2012) investigated the pollution
problem of three lakes with interconnecting channels using
a collocation approach. In particular, government can use
revenues from pollution taxes to decrease other,
distortionary taxes. In this way, environmental taxes may
yield a “double dividend”- not only a cleaner environment,
but also a less distortionary tax system (Endres 2011). How-
ever, none of these papers take the structure of the lake
basin into full consideration (Zhao et al. 2012).

Through auctioning or purchasing their pollution permit
while not breaking the total pollution limit in the region,
issuing pollution permit would satisfy the demands of na-
tional standard and further resulted effectively in an overall
pollution reduction (Chung et al. 2012). However, this would
only happen in a state of equilibrium market and there is a
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unique price for every commodity in question. But, in a prac-
tical developing country, which is imperfect by nature, per-
mit trading is never at equilibrium and very volatile depend-
ing upon the vagaries of the market forces (Goulder 2013).

Many economists have argued that pollution levies are
an efficient instrument for achieving environmental
objectives (Engel et al. 2008). Some have gone even further
to suggest that environmental taxes may yield benefit over
and above a cleaner environment (Peretto 2009). Therefore,
the focus is now turning to compulsory measure such as
obliged levying pollution tax (or charge) or forcing upgrade
waste water treatment facilities as a tool to address water
pollution. Based on a bilevel programming problems, Zhao
et al. (2012, 2013) proposed models of uniform transfer tax
which incorporates a typical Stackelberg game between the
administrator and individual regions. Their models
guaranteed that the imposed environmental quality standard
was met through the uniform transfer tax. However, under
the uniform tax, no matter how serious the environment
damaged by the transfer pollution, the marginal transfer cost
is uniform. It implies that this approach would weaken
regions’ initiative to mitigate their individual pollution.
For example, if the uniform transfer tax is too low compared
with some region’s marginal reduction cost, then this region
would like to transfer this pollution and ask other regions to
reduce it. Although the whole region’s pollution control
objective is obtained by their model, the environment has
been unfortunately damaged due to the over polluted by
that region’s transfer of pollution.

Located in the east of Asia, China has 1580 large rivers
and each river basin covers more than 1000 km2. Large riv-
ers usually spanning several regions inevitably results in
transboundary water pollution problems. Chinese govern-
ment has been aware of this issue for more than ten years. Up
to the present, a basic legal system has been established to
deal with the problem. However, its effect is not notable and
the water pollution is still worsening day by day. One reason
for the failure is that water pollution like Zhanghe river and
Taihu lake usually crossing several administrative region
boundary in nature, but controlled separately by each
administrative region.

In this paper, we develop a rating tax control model
(RTCM) to mitigate China’s transboundary water pollution
problem, and prove that the RTCM is equivalent to a
nonlinear program. The RTCM can ensure that the environ-
mental quality standard is arrived. Under RTCM, the more
transfer pollution, the high it should be paid. Moreover,
from a management (as well as a computational) perspective
an optimality condition of RTCM is proposed. Finally, we
use a simple example to illustrate the validity of our results.

TRANSBOUNDARY WATER POLLUTION UNDER
RANKING TRANSFER TAX CONTROL

We consider China’s transboundary water pollution con-
trol problem based on an underlying complete directed graph
G (I,T), where I  (i.e., the number of regions) that denotes the

set of nodes, and T, of cardinality 
| | (| | 1)

2
I I 

, that denotes

the set of arcs. A node represents a region that can poten-
tially transfer pollutants or pollutant credits or the end of an
arc along which pollutants or credits are transferred. The arc
set T denotes the pollutant quantity transferred between each
pair of regions. Some other basic variables used in the RTCM
are described in Table 1.

In this paper, we make the following assumptions on
reduction function, and the bounds of reduction variables
are described as follows:

(a) For any i I , 1 1:iRC R R   is strictly increasing and

strictly convex.

(b) 0 maxi t t i
i I i I
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Transboundary water pollution problem under rating tax
control: For region iI , its environmental cost function 

i

contains two parts: pollution reduction cost and transfer
cost, i.e.,

| |
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The sign of denotes the transferable pollution, T
ij
 is trans-

ferred from region i to region j or from region j to region i.
From the pollution quantity conservation, we have:
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From the definition of transfer cost function TC in Table
1, it is a piecewise linear function regarding to transferable
pollution quantity and its compact form is as follows:
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in region iI below the national standard, and constraint (9)
represents the pollution quantity conservation.

The RTCM is actually a generalized Nash game, in which
each region’s strategy set depends on the other players’
strategies due to the coupled constraint (9). This kind of game
is known to admit a large number, and in some cases, a
manifold of generalized Nash games (Facchinei & Kanzow
2007, Pang & Fukushima 2005). In general, obtaining
generalized Nash games requires a solution of an ill-posed
system which leads to a quasi-variational inequality in the
primal-space and a non-square complementary problem in
the primal-dual space (Kulkarni & Shanbhag 2012). Fortu-
nately, RTCM is a special generalized Nash game, whose
objective function is separate. The next proposition shows that
the RTCM is equivalent to a common nonlinear program.

Proposition 1: ( iP ) i I  is the optimal solution to the fol-
lowing nonlinear programming problem (NP) if there exists
( )i i Iy   such that ( iP , iy ) solves RTCM. Here

      
 

0 max0
NP     min ( )+ TC( )

i
t i i i i iP i I i I

RC P P P P


 

            ...(10)

Where , 0,1, 2, ,jb j N   is the breakpoints of transfer

pollution and satisfy the following condition:

0 1 20 Nb b b b     ...(5)

Combining the above discussion, the rating tax control
model (RTCM) for the transboundary water pollution can
be described as the follows: For each region i I ,

 ,
RTCM            min ( ) TC( )

i i
i i i iP y

RC P y   ...(6)

       s.t.     ,i i il P u  ...(7)

       0 max ,i i i iP y P P   ...(8)

 
0.i

i I
y



 ...(9)

Under RTCM, each region aims to optimize its own ob-
jective function (

i
) with respect to variables P

i 
 and , con-

straint (7) means the ability of each region’s wastewater
treatment facilities, constraint (8) represents that the aim of
pollution reduction is to control the level of the pollutant

Table 1: Notations.

Variable Explanation 
 

P0i The annual initial air pollutant quantity produced by region i ∈ I. 
P0t The total annual air pollutant industry quantity produced by all regions in the transboundary water pollution 

problem, where 0t 0i
i I

P P


 . 

Pi The annual water pollutant quantity produced by region i ∈ I. 
Pimax The maximum quantity of water pollutant emissions for region i ∈ I based on the national pollutant quality 

standard. 
Ptmax The total maximum quantity of air pollutant emissions for all regions in the transboundary water pollution 

problem, where t max maxi
i I

P P


 . 

Pi The annual water pollutant reduction by region i ∈ I. 
li the lower limit of the annual pollution reduction ability for region i ∈ I. 
ui The upper limit of the annual pollution reduction ability for region i ∈ I. 
Tim The pollutant quantity transferred between region i and region m during one year. The sign of Tim depends on the 

tradeoff between the actual pollutant concentration and the national quality standard at the transboundary section, 
and it reveals the pollutant transferred from region i to region m or from region m to region i. 

bj The breakpoint of transfer pollution. There are N+1 grades of transfer pollution 0{ }N
jb ,which is a strictly 

increasing sequence.  
kj The jth grade of rating tax, which means that a payment will be levied on the region if the pollution quantity 

between 1jb  and jb that it transfers through the transboundary section exceeds the national standard. The more 

the pollution transferred to other regions, the more is paid, i.e., the N grades of rating tax 1{ }N
jk  is a strictly 

increasing sequence. 
RCi The annual water pollutant reduction cost function for region i ∈ I. 
TC The transfer cost function regarding with the transfer pollution quantity and the grade of rating tax.  
πi the annual total environmental cost for region i ∈ I. 

 



Vol. 13, No. 2, 2014  Nature Environment and Pollution Technology

348 Changmin Li et al.

 s.t.    , .i i il P u i I               ...(11)

 
0t max ,i t

i I
P P P



              ...(12)

Proof: We first claim that constraint (8) in RTCM is actu-
ally an equality constraint. If not, let ( iP , iy ) i I  be any
optimal solution of RTCM. Then there exists at least a
j I such that 0 max .j j j jP y P P     Therefore, we can choose
ˆ

jP satisfying ˆ
j jP P   and 0 max

ˆ .j j j jP y P P  

Recalling assumption (a), the reduction function ( )jRC 

is strictly increasing. Then, we have:
ˆ( ) TC( ) ( ) TC( )i i i i i iRC P y RC P y    ,which contradicts

with the optimality of ( iP , iy ) i I . Therefore,

0 max .i i i iP y P P   

This implies that RTCM is equivalent to the following
problem: for any region i I ,

P1:        
,

min ( ) TC( )
i i

i i i iP y
RC P y               ...(13)

      s.t.     ,i i il P u              ...(14)

     0 max ,i i i iP y P P               ...(15)

0.i
i I

y


             ...(16)

Considering constraints (15) and (16), in which transfer
volume iy  can be considered as relaxed variable, then we
reformulate the above optimization program as follows: For
any region iI,

P2:       0 maxmin ( ) TC( )
i

i i i i i iP
RC P P P P    

s.t.    , ,i i il P u i I               ...(17)

       0t max .i t
i I

P P P


              ...(18)

Then, in order to complete the proof, we only need to
prove the equivalence of P2 and NP.

Suppose that ( iP ) i I  is the optimal solution of P2. Then
for any iP  satisfying constraints (6) and (7), we have,

0 max 0 max( ) TC( ) ( ) TC( )i i i i i i i i i iRC P P P P RC P P P P      

Summing the above up, we have,

0 max 0 max( )+ TC( ) ( )+ TC( )i i i i i i i i i i
i I i I i I i I

RC P P P P RC P P P P
   

       

0 max 0 max( )+ TC( ) ( )+ TC( )i i i i i i i i i i
i I i I i I i I

RC P P P P RC P P P P
   

       

Therefore, combining the feasibility of ( iP ) i I , ( iP ) i I
is the optimal solution of NP. For any i I , since reduction
function RC

i
(.) and transfer cost TC(.) are strictly convex,

NP has a unique minima. It implies that the converse is true.
Then we complete our proof.

Optimality conditions of RTCM: Form the definition of
transfer cost function, we can see that it is non-differenti-
able in the common sense. Here, we use the Clarke’s gener-
alized gradient to solve optimization problem NP.

 Let : nR R   be a convex function, then the Clarke
generalized gradient (Ye & Zhu 2010) at x  is a convex and
compact subset of nR  defined by,

' 0( ) { : ( ; ) }n nx R d x d d R         ,

where, 
0

0

( ) ( )( ; ) limsup
x x t

x td xx d
t

 


 

 


Proposition 2: If ( iP , iy ) i I is the optimal solution to
RTCM, then there exists , 1, 2, ,| |i i I   and 0  such
that for any 1,2, ,| |i I  ,
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Where, ' ( )iRC  is the derivative of ( )iRC  , and 1( )iRC   is
the inverse function of ' ( )iRC  .

Proof: Recalling the results of Proposition 1, we only need
to prove the proposition holds for NP. Consider the non-
differentiable optimization problem NP. From the
convexity of RC

i
(.) and TC(.),  there exist

0 maxTC( ), 1, 2, ,| |i i i iP P P i I      and 0   such that

'

'

'

( ) 0,
( ) 0,
( ) 0,

i i i i i
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Where,

0 max 1 0 maxTC( ) [ , ], ,  where 1i i i l l i i i lP P P k k P P P b l        

1 0 max 1 0 max 0

0 max 1 0 max

1 0 max 1 0 max
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Since ( )iRC   is strictly increasing, 1( )iRC   is well defined.

 

23T  

23T  

31T  
13T  

21T  12T  
Region 1 

Region 2 Region 3 

Fig. 1: The lake surounded by three regions.
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Therefore,

'
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Then, we complete our proof.

In view of Proposition 1 and equation (17), we can see
the optimal reduction of RTCM is a function with variable
of  , i.e., ( )i iP P   . In order to find the optimal reduction
of RTCM, we only need to find a   such that,

0t max( )i t
i I

P P P


                ...(20)

In view of assumption (b), 0t maxi t i
i I i I

l P P u
 

    . From
the mean value theorem and the strictly increasing property
of ' 1( )iRC  , we can see that equation (20) has one and only
one solution.

An illustrate example: Let us consider a lake surrounded
by 3 regions. The structure is shown in Fig. 1 and all used
data for this example are given in Table 2.

Choose, 0 1 210,  10, 20,b b b    0 1 21,  300, 350,k k k  
if we do not use the generalized Clarke’s gradient, we can
directly compute the reaction function 1, 2 and 3, and plot
them in Fig. 2.

Due to the discontinuity of reaction function 1, the sum-
mation of the three reaction functions is also discontinuous.
If we use the Clarke’s gradient, the reaction function 1 and
summation of three reaction functions are all become con-
tinuous. The modified picture for the reaction functions is
shown in Fig. 3.

According to (19-20), we can test that the optimal results
are * 300   and * 478.332  with optimal reductions for the
three regions *

1 =533.783P thousand tons, *
2 47.8123P 

thousand tons and *
3 39.6133P   thousand tons, respectively.

CONCLUSION

In this paper, we have introduced, analysed and implemented
an efficient RTCM over China’s transboundary water
pollution control. One of the main features of the model
being its non-differentiable cost function, this raises the
issue of alternative existence theory and new pollution

Table 2: Data for the example.

Lower bound of Upper bound of Reduction cost Current reduction
 reduction (104 t)  reduction (104 t) function (104 RMB) (104 t)

Region 1 46.0110 85.4490 484.756 P1
1.096 63.3780

Region 2 44.9890 83.5510 371.8 P2
1.154 53.6460

Region 3 39.6133 73.5677 48.91 P3
2.277 23.7799

control approaches. Prime suspects in that class would be
models based on taking water or air transport function as
the transfer cost. Another natural extension is introducing
physical structure into the model, features that have been
mainly considered in the framework of uniform tax policy.
Both will be the topic of forthcoming works.
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