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ABSTRACT

Based on the grey theory, grey characters of river environment system were analyzed. The velocity and
dispersion coefficient and attenuation in river were considered as uncertainty parameters and expressed as
grey parameters. A grey differential equation of contaminant diffusion in river was built. And the equation has
special structure. The truncation error of finite differential method in solving the model was corrected. According
to the model, distribution values of pollutant concentration under sudden pollutant discharge can be obtained
directly, which can provide abundant and useful water quality information for the plan and control of water
pollution. It is shown that the calculated results obtained from the grey model are reliable and reasonable.
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INTRODUCTION

The Grey systematic theory is proposed by Chinese profes-
sor Deng (1982).  In the theory, there is not only a large
amount of known information called white system, but also
much unknown and uncertain information called black sys-
tem. The system including white system and black system is
called grey system. Contaminant transport in natural river
system usually occurs in varied flow fields and in anisotropic
and heterogenous media. Because the applicability of ana-
lytical solutions is extremely limited for such conditions,
numerical techniques are essential for underground pollu-
tion simulation. Mecarthy (1989), Li & Wang (2004), Li et
al. (2005) and Basha & El-Habel (1999) made much work
about the uncertain issues. Among the numerical techniques,
the grey numerical method has become very popular and is
recognized as a powerful numerical tool. The distribution
and transport of pollutants mentioned  by Liu et al. (1999),
Chen & Wagenet (1995), Xu et al. (2002) in groundwater
are controlled by physical chemistry and biology functions,
which include advection, diffusion, dispersion, sorption,
decay and biodegradation. In the courses, there is not only
the known information but also uncertain information. There-
fore, it can be seen as one grey system. Considering the above
mechanism synthetically, two-dimensional grey model about
river water pollution is built in this paper. It has the signifi-
cant practical value for the research of grey simulation of
river water pollution.

ESTABLISHMENT OF THE FINITE DIFFERENTIAL
EQUATION OF ATMOSPHERIC POLLUTION

Grey characters in water environment system: Water en-
vironment can be seen as an open system of large-scale sys-
tems. Flow rate, pollutant concentration, diffusion coeffi-
cient and attenuation coefficient parameter information in
river system exist uncertainty. In these uncertainties, some
information is an objective existence, and some are not en-
tirely caused from the measured data, and some are caused
by unclear inherent mechanism and unclear understanding
of the changing law. But no matter what reasons the uncer-
tainty is brought, would lead to decision-makers on water
environmental systems on the subjective perception of un-
certainty, that is unascertained. So, velocity and dispersion
coefficient and attenuation in river are considered as uncer-
tainty parameters and expressed as grey parameters. And the
advection-dispersion equation is studied based on grey
theory.
Grey numerical model for one-dimensional water
quality: The mathematic model of solute transport equation
can be written as follows:
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Where, c⊗ is grey concentration of pollutant in section,
/mg l ; E⊗  is the grey diffusion coefficients in the landscape

orientation, 2 /m s ; u⊗  is grey velocity in section; t  is time,
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s ; and x  is distance, m.
To any differential equation, its solution can only be solved

in special initial condition and boundary condition. In this
paper, the constraint condition can be described as follows:
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Finite difference equation can replace differential equa-
tion as follows:
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Because the finite difference approach uses limited de-
velopments of derivatives, it is only an approximation of
partial differential equations leading to truncation errors.
Truncation errors affect the accuracy of numerical
simulations. A Taylor series expansion of c about any grid
point is used to determine the form of truncation errors (Zhu
et al. (2006). If terms of third and higher orders are neglected,
then:
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The second-order temporal derivative of c is written in
terms of spatial derivatives using the differentiated form of
eq.  [11]. The transport parameters are assumed to be con-
stant within each combination of time and space increments
in the finite difference calculations. Thus, to second order
accuracy:
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Eq. (6) may then be written as:

2
2

2

2

2

2

( ) ( )
( ) [( ) 2( )( )]

2
( ) ( )

[( ) ( )( )] [( ) ( )( )]

[( ) ( ) ]( ) ( , , )
2

xx xx

yy yy

C t CD u k D
t x

C CD t k D u t u k
y x

tk k C s x y t

∂ ⊗ ∆ ∂ ⊗ = ⊗ − ⊗ − ⊗ ⊗ + 
∂ ∂ 

∂ ⊗ ∂ ⊗
⊗ + ∆ ⊗ ⊗ − ⊗ + ∆ ⊗ ⊗ −

∂ ∂
∆

⊗ + ⊗ ⊗ +

...(7)

Namely:
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Eq. (7) can be simplified as:
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To remove the induced truncation errors from the finite
difference model, the model can be rewritten as:
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Adopting the same picking-number with the grey
number, the two following equations can be obtained.
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The equation has the special structure, which can be
solved by the special method [3][11].
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The two equations can be solved by turns as following,
and the grey concentration of groundwater quality (cai  cbi)
can be obtained.
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Fig. 3: Impact of grey decay coefficient on migration of pollutant.
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Fig. 2: Impact of grey velocity on migration of pollutant.

Fig. 1: Impact of grey diffusion coefficient on migration of pollutant.
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APPLICATION

To one-dimensional river water pollution problem, the gov-
erned equation and constraint condition can be described as
equation1 and equation 2.  In order to verify the model, the
grey result will be compared with classic numerical solu-
tion. For information input, relationship of decay coefficient
k and (ka, kb) with pollutant concentration c and (ca, cb), and
velocity u and (ua, ub) with pollutant concentration are needed
to be considered. In order to analyse the sensitivity, when
analyzing one parameter’s influence on pollutant concen-
tration, other parameters remains unchanged, and grey pa-
rameter can float its lower and upper value 10%. The param-
eters are as follows:

0.2k = , 0.18ak = , 0.22bk = , 4 /u m s= , 3.6 /au m s= ,

4.4 /bu m s= , 400E = , 360aE = , 440bE =

The calculated results can be seen from Figs. 1 to 3. We
can see that the curve of contaminant transport by grey nu-
merical model is one “grey strip”. That is to say the value of
grey numerical model changes in some ranges, but not one
certain value. While the analytical solution is within the
ranges, this reveals that the method is reliable. In present
study, the data of hydraulic and water quality in river water
system is absent, so the grey mathematic model can be ap-
plied to the fields. Influence scope of decay coefficient is
lager than other parameters.

CONCLUSIONS

1. It is reasonable and reliable that simulation and prediction
of groundwater quality with uncertain information is
made by grey mathematic, which provides one new
method to simulate and predict the groundwater quality.

2. Compared with analytical solution, some uncertain
parameters in grey model such as dispersion coefficient
and seepage velocity can be given grey ranges. The result

is one grey strip which has great advantages for the
application of model and decision-making.

3. The numerical model in this paper has the common
applicability to the surface water pollution and
convection-diffusion equation.
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