|--|--|

Nature Environment and Pollution Technology © Technoscience Publications

pp. 319-325

# PRELIMINARY STUDY ON SELECTED PARAMETERS OF TUMKUR CITY SEWAGE

Vol. 7

## K. S. Kumara and S. L. Belagali

Department of Studies in Environmental Science, University of Mysore, Mysore-570 006, Karnataka

#### ABSTRACT

Sewage is domestic waste enriched with nutrients and plays vital role in water pollution. Tumkur city sewage studies were conducted during summer and monsoon (Feb. 2007 to Sept. 2007) for temperature, pH, EC, total dissolved solids (TDS), dissolved oxygen (DO), free carbon dioxide, hydrogen sulphide, BOD, COD, acidity, alkalinity, hardness, chloride, nitrate and phosphate from six sampling points namely residential area ( $S_1$ ), business centre ( $S_2$ ), slum ( $S_3$ ), converging point ( $S_4$ ), open drain ( $S_5$ ) and treated ( $S_6$ ). The results revealed that the EC, chloride, hardness, TDS, alkalinity and acidity were decreased, whereas pH and DO values increased in the treated sewage. The significance of closed, open drainage, converging and treated sewage chemistry results are discussed in light of the recent literature. The low cost treatment measures are suggested to reduce BOD and nutrient levels of the sewage.

# INTRODUCTION

Determination of sewage characteristics is useful in identifying the appropriate methodology for treatment and to design the facility for disposal and reuse (Tchobanoglous 1979). The anthropogenic activity becomes prime concern for production and discharge of sewage into the wetlands, which ultimately is a major concern for the welfare of human beings (Thirumurty & Francis Fanthome 1995). The raw sewage consists of 99.9% water and 0.1% solids which include 70% organic and 30% inorganic materials. The organic materials include 65% proteins, 25% carbohydrates and 10% fats and the inorganic materials include grit, salts, metals, etc. (Sharma & Kaur 1994). The sewage is nutrient source for maintaining biological richness of a water body. The sewage when influxes the aquatic systems cause serious effects on physico-chemical and biological characteristics of the waters. The oxygen present in the lotic/lentic systems would destroy the organic part of sewage under natural processes. The biodegradable substances of sewage are rapidly decomposed by oxidation. The population explosion among developing countries and the sustainable consumption pattern are escalating stress on aquatic environmental systems by sewage. The production and unscientific discharge of sewage generates toxic materials and also creates serious problems to environment and biodiversity (Dara 2006). The strength of sewage varies in different geographical locations owing to the differences in diet, and water consumption of animals and human beings. Due to accumulation of domestic waste or sewage in aquatic bodies, they are unable to recycle them and their self regulating capacity decreases. When the aquatic systems are enriched with nutrients of sewage, they cause eutrophication which results in the loss of hydrobionts (Ninave 2000). During this process oxygen requirement (BOD) increases. The sewage supports the growth of fast growing aquatic weeds but affects the growth of waterborne organisms (Bazzaz 1990). It is found that, a large amount of domestic sewage generated in the Indian cities is confluenced with inland waters and sea. Hence, an attempt has been made for the preliminary study of some selected parameters during summer and monsoon (Feb. 2007 to Sept. 2007) of Tumkur city sewage in Karnataka State, India.

#### MATERIALS AND METHODS

The Tumkur city is located between 13°19'0" to 13°27'19" north latitude and 77°05'26" to 77°07'12" east longitude, about 68 km in the north west of Bangalore. It lies at 818.51 m above MSL and has spread in an area of about 102.6 sq. km with the population of about 3 lakh. The rain is confined to the months of May and November with an average rainfall of about 586.2 mm, the temperature raises from March to May. South west monsoon starts in June and thereafter the temperature decreases. The average ambient temperature during the observation period was 28°C.

The sewage samples were collected separately in 3-litre polythene cans from six sampling points  $S_1, S_2, S_3$  (closed),  $S_4$  (converging),  $S_5$  (open) and  $S_6$  (treated) between 7 A.M. to 8 A.M. in first week of every month, and immediately brought to the laboratory for analysis. The temperature, pH, EC, TDS, DO, CO<sub>2</sub>, H<sub>2</sub>S, BOD, COD, acidity, alkalinity, hardness, chloride, nitrate and phosphate were estimated following the standard methods (APHA, AWWA, WEF 1995).

### **RESULTS AND DISCUSSION**

Several factors are to be considered while assessing the quality of sewage which includes physical, chemical and biological characteristics. The values of temperature are given in Table 1 and Fig. 1. pH is hydrogen ion activity and varies due to the microbial activities (Garg et al. 2007). The pH varied between 7.3 and 8.1 (Table 2, Fig. 2). The pH values are higher in open drain ( $S_5$ ) and treated sample ( $S_6$ ).

EC of treated sample ( $S_6$ ) is low (1.343 mS/cm) and high for residential area ( $S_1$ ) at 2.01mS/cm (Table 3, Fig. 3). EC is used to evaluate variations in dissolved salts of wastewaters. The high electrical conductivity value of  $S_1$  sample is due to the presence of high concentrations of ionic constituents.

The TDS values are in accordance with EC values with little variations (Table 4, Fig. 4). Analysis of solids is important in the control of biological and physical wastewater treatment processes (APHA AWWA WEF 1995). Since the TDS values are low in the above samples, they do not affect the treatment process.

Dissolved oxygen varies from 1.91 mg/L to 3.60 mg/L (Table 5, Fig. 5). The low values of DO are due to low photosynthetic activity and more consumption by biota (Wetzel 1983). The lower DO values indicate the presence of high organic pollutants. However, there is a considerable increase in the DO value after aeration treatment.

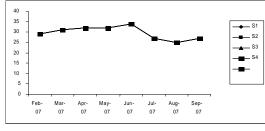
The free carbon dioxide is the only source of carbon assimilated and incorporated into the body of living aquatic autotrophs (Shoukat Ara et al. 2003). The  $CO_2$  concentration was found constantly higher in all the samples except the treated sample (Table 6, Fig. 6) due to the high microbial activity.

Hydrogen sulphide content was found to be higher during summer season and minimum in rainy season (Table 7, Fig. 7).

The maximum BOD (435mg/L) was recorded in  $S_4$  and minimum (154mg/L) at  $S_6$  (Table 8, Fig. 8). BOD values for all the untreated samples were in higher range and show the maximum organic pollution. The sample station  $S_4$  is receiving the wastes from slaughter houses. The BOD value is reduced almost 50% after the aeration treatment.

The maximum COD was 745mg/L recorded in  $S_3$ , and minimum of 78mg/L recorded in  $S_6$  (Table 9, Fig. 9), which indicates that the raw sewage has high COD values because of more presence of oxidisable organic matter (Maya et al. 2007).

Acidity of sewage was found to be high in raw sewage samples  $(S_1, S_2, S_3, S_4 \text{ and } S_5)$  and low in treated sample  $S_6$  (Table 10, Fig. 10). Alkalinity is significantly reduced in the treated wastewater. The raw sewage alkalinity ranged from 971mg/L to 1339mg/L, which has reduced to 665mg/L in treated sample  $(S_6)$  (Table 11, Fig. 11).


Hardness of sewage is mainly due to calcium and magnesium salts, which are consistent in all the samples. The higher values were recorded in the raw sewage samples than the treated one. The values ranged between 360 mg/L and 600 mg/L (Table 12, Fig. 12). Chloride values varied from 84 mg/L to 383 mg/L (Table 13, Fig. 13) and found low in the month of May for  $S_5$  sample owing to the dilution effect. High chloride value may be due to organic wastes of animal origin and domestic wastes.

Nitrate-N in the present study varied from 0.05 mg/L to 0.26mg/L (Table 14, Fig. 14). Nitrogen is essential for all organisms for basic processes of life. Nitrate concentration is consistent in all untreated samples which encourages the eutrophication. Direct relation exists between the degree of pollution and concentration of nitrates. Low concentration of nitrate during June, July, August and September may be due to utilization by algae as they highly consume nitrates. Microbial activity can also be responsible for low value (Sharma et al. 1981).

Inorganic phosphorus in the form of orthophosphate plays a dynamic role in aquatic ecosystems, as it is readily taken up by phytoplankton or lost to the sediment. The values are high during July 2007 (Table15, Fig. 15). The increase in value is due to land runoff, decayed phytoplankton and

| Month  | <b>S</b> 1 | S2 | <b>S</b> 3 | S4 | S5 | <b>S</b> 6 |
|--------|------------|----|------------|----|----|------------|
| Feb-07 | 29         | 29 | 29         | 29 | 29 | 29         |
| Mar-07 | 31         | 31 | 31         | 31 | 31 | 31         |
| Apr-07 | 32         | 32 | 32         | 32 | 32 | 32         |
| May-07 | 32         | 32 | 32         | 32 | 32 | 32         |
| Jun-07 | 34         | 34 | 34         | 34 | 34 | 34         |
| Jul-07 | 27         | 27 | 27         | 27 | 27 | 27         |
| Aug-07 | 25         | 25 | 25         | 25 | 25 | 25         |
| Sep-07 | 27         | 27 | 27         | 27 | 27 | 27         |
|        |            |    |            |    |    |            |

Table 1: Variation in temperature (°C).



| Table 2: | Variations | in | pH. |
|----------|------------|----|-----|

| Month  | <b>S</b> 1 | S2   | <b>S</b> 3 | <b>S</b> 4 | S5   | <b>S</b> 6 |
|--------|------------|------|------------|------------|------|------------|
| Feb-07 | 7.37       | 7.36 | 7.38       | 7.87       | 7.37 | 7.9        |
| Mar-07 | 7.75       | 8.16 | 7.16       | 7.79       | 7.74 | 8.1        |
| Apr-07 | 7.33       | 7.31 | 7.27       | 7.22       | 7.77 | 7.9        |
| May-07 | 7.16       | 7.2  | 7.13       | 6.83       | 7.46 | 7.97       |
| Jun-07 | 7.7        | 7.92 | 7.65       | 7.59       | 7.96 | 8.82       |
| Jul-07 | 7.16       | 7.28 | 7.3        | 7.11       | 7.65 | 8.39       |
| Aug-07 | 7.7        | 7.5  | 7.6        | 7.4        | 7.8  | 7.7        |
| Sep-07 | 7.2        | 7.1  | 7.3        | 7.8        | 7.5  | 7.7        |

Fig. 1: Variation in Temperature (°C)

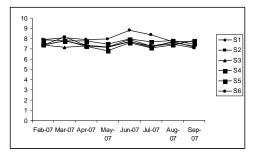



Fig. 2: Variations in pH.

Table 3: Variations in EC (mScm<sup>-1</sup>).

| Month                                                              | <b>S</b> 1                                           | S2                                                   | <b>S</b> 3                                              | <b>S</b> 4                                         | S5                                                     | S6                                                             |
|--------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------------|
| Feb-07<br>Mar-07<br>Apr-07<br>Jun-07<br>Jul-07<br>Aug-07<br>Sep-07 | 2.04<br>2.3<br>1.95<br>1.7<br>2.1<br>2.1<br>1.9<br>2 | 1.86<br>2<br>1.51<br>1.6<br>1.7<br>1.7<br>1.6<br>1.6 | 1.95<br>2.1<br>1.95<br>1.04<br>1.7<br>1.8<br>1.7<br>1.3 | 2.04<br>2.2<br>1.78<br>1.5<br>1.9<br>2<br>2<br>1.7 | 1.67<br>1.9<br>1.51<br>0.7<br>1.8<br>1.8<br>1.7<br>1.7 | 1.45<br>1.4<br>1.35<br>1.4<br>1.3<br>1.3<br>1.3<br>1.2<br>1.01 |

Table 4: Variations in TDS (mg/L).

| Month  | <b>S</b> 1 | S2   | <b>S</b> 3 | <b>S</b> 4 | S5  | <b>S</b> 6 |
|--------|------------|------|------------|------------|-----|------------|
| Feb-07 | 830        | 850  | 840        | 845        | 849 | 610        |
| Mar-07 | 960        | 1330 | 1330       | 1010       | 946 | 630        |
| Apr-07 | 860        | 885  | 845        | 854        | 820 | 640        |
| May-07 | 620        | 635  | 630        | 640        | 610 | 590        |
| Jun-07 | 920        | 890  | 870        | 960        | 880 | 675        |
| Jul-07 | 1008       | 844  | 862        | 988        | 866 | 665        |
| Aug-07 | 1012       | 832  | 852        | 978        | 854 | 650        |
| Sep-07 | 989        | 825  | 860        | 846        | 845 | 620        |

| Month  | <b>S</b> 1 | S2  | S3  | <b>S</b> 4 | S5  | S6  |
|--------|------------|-----|-----|------------|-----|-----|
| Feb-07 | 1.4        | 1.8 | 0   | 4.4        | 3.2 | 3.8 |
| Mar-07 | 2.8        | 3.2 | 5.9 | 3.2        | 4.4 | 3.6 |
| Apr-07 | 5.5        | 2.2 | 3.8 | 1.8        | 2.2 | 4   |
| May-07 | 3.1        | 1.8 | 2.1 | 2.2        | 1.1 | 4.2 |
| Jun-07 | 0.5        | 2.6 | 2.2 | 1.4        | 0.9 | 3.4 |
| Jul-07 | 0.1        | 1.2 | 2.3 | 0.1        | 0.3 | 3.9 |
| Aug-07 | 0.6        | 1.1 | 2.9 | 1          | 1.5 | 3.2 |
| Sep-07 | 1.4        | 2.3 | 1.6 | 1.8        | 1.7 | 2.7 |

Table 6: Variations in free  $CO_2$  (mg/L).

| Month  | <b>S</b> 1 | S2 | <b>S</b> 3 | <b>S</b> 4 | S5  | S6 |
|--------|------------|----|------------|------------|-----|----|
| Feb-07 | 42         | 62 | 46         | 42         | 62  | 11 |
| Mar-07 | 56         | 75 | 50         | 36         | 49  | 16 |
| Apr-07 | 62         | 82 | 39         | 38         | 56  | 15 |
| May-07 | 59         | 94 | 16         | 81         | 62  | 0  |
| Jun-07 | 124        | 51 | 62         | 124        | 113 | 0  |
| Jul-07 | 181        | 53 | 88         | 148        | 139 | 14 |
| Aug-07 | 55         | 90 | 50         | 78         | 57  | 0  |
| Sep-07 | 64         | 36 | 83         | 62         | 88  | 15 |
|        |            |    |            |            |     |    |

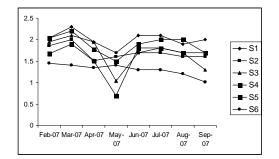



Fig. 3: Variations in EC (mScm<sup>-1</sup>).

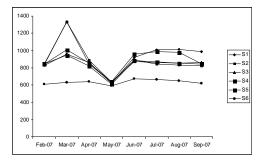



Fig. 4: Variations in TDS (mg/L).

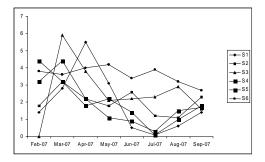



Fig. 5: Variations in DO (mg/L).

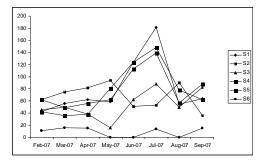



Fig. 6: Variations in free  $CO_2$  (mg/L).

Table 7: Variations in H<sub>2</sub>S (mg/L).

| Month  | <b>S</b> 1 | S2   | <b>S</b> 3 | <b>S</b> 4 | S5   | <b>S</b> 6 |
|--------|------------|------|------------|------------|------|------------|
| Feb-07 | 3.4        | 1.2  | 0.42       | 0.85       | 0    | 0          |
| Mar-07 | 0.85       | 2.3  | 0.42       | 3.82       | 0    | 1.2        |
| Apr-07 | 3.34       | 1.86 | 0.5        | 0.48       | 0    | 0          |
| May-07 | 1.7        | 0    | 0          | 0          | 0    | 0          |
| Jun-07 | 0.21       | 0.42 | 1.27       | 0          | 0.85 | 0          |
| Jul-07 | 0          | 0.23 | 1.16       | 0          | 0    | 0.23       |
| Aug-07 | 0.21       | 0.23 | 0.42       | 0          | 0    | 0          |
| Sep-07 | 0.23       | 0.46 | 0          | 0          | 0    | 0.23       |

Table 8: Variations in BOD (mg/L).

| Month  | <b>S</b> 1 | S2  | <b>S</b> 3 | S4  | S5  | S6  |
|--------|------------|-----|------------|-----|-----|-----|
| Feb-07 | 102        | 306 | 428        | 428 | 389 | 110 |
| Mar-07 | 360        | 550 | 816        | 356 | 725 | 135 |
| Apr-07 | 164        | 216 | 633        | 121 | 526 | 160 |
| May-07 | 220        | 211 | 264        | 97  | 97  | 123 |
| Jun-07 | 570        | 560 | 580        | 550 | 620 | 280 |
| Jul-07 | 100        | 156 | 111        | 201 | 223 | 33  |
| Aug-07 | 240        | 340 | 320        | 330 | 320 | 201 |
| Sep-07 | 381        | 371 | 331        | 347 | 401 | 190 |
|        |            |     |            |     |     |     |

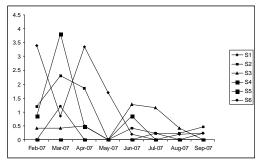



Fig. 7: Variations in H<sub>2</sub>S (mg/L).

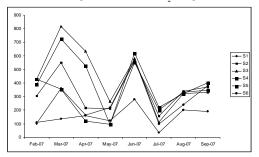



Fig. 8: Variations in BOD (mg/L).

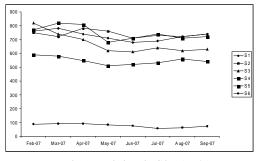



Fig. 9: Variations in COD (mg/L).

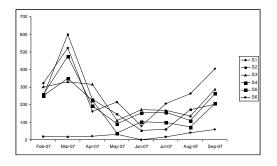



Fig. 10: Variations in Acidity (mg/L).

| Table 9: Variations | in | COD | (mg/L). |
|---------------------|----|-----|---------|
|---------------------|----|-----|---------|

| <b>S</b> 1 | S2                                            | <b>S</b> 3                                                          | <b>S</b> 4                                                                                      | S5                                                                                                                          | <b>S</b> 6                                                                                                                                              |
|------------|-----------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| 760        | 750                                           | 820                                                                 | 770                                                                                             | 590                                                                                                                         | 89                                                                                                                                                      |
| 780        | 720                                           | 740                                                                 | 820                                                                                             | 580                                                                                                                         | 90                                                                                                                                                      |
| 740        | 780                                           | 700                                                                 | 810                                                                                             | 550                                                                                                                         | 92                                                                                                                                                      |
| 710        | 760                                           | 620                                                                 | 680                                                                                             | 510                                                                                                                         | 84                                                                                                                                                      |
| 680        | 710                                           | 610                                                                 | 710                                                                                             | 520                                                                                                                         | 76                                                                                                                                                      |
| 690        | 730                                           | 640                                                                 | 740                                                                                             | 530                                                                                                                         | 58                                                                                                                                                      |
| 720        | 720                                           | 620                                                                 | 710                                                                                             | 560                                                                                                                         | 62                                                                                                                                                      |
| 738        | 740                                           | 630                                                                 | 720                                                                                             | 540                                                                                                                         | 74                                                                                                                                                      |
|            | 760<br>780<br>740<br>710<br>680<br>690<br>720 | 760 750   780 720   740 780   710 760   680 710   690 730   720 720 | 760 750 820   780 720 740   740 780 700   710 760 620   680 710 610   690 730 640   720 720 620 | 760 750 820 770   780 720 740 820   740 780 700 810   710 760 620 680   680 710 610 710   690 730 640 740   720 720 620 710 | 760 750 820 770 590   780 720 740 820 580   740 780 700 810 550   710 760 620 680 510   680 710 610 710 520   690 730 640 740 530   720 720 620 710 560 |

Table 10: Variations in acidity (mg/L).

| Month  | <b>S</b> 1 | S2  | <b>S</b> 3 | <b>S</b> 4 | S5  | <b>S</b> 6 |
|--------|------------|-----|------------|------------|-----|------------|
| Feb-07 | 322        | 250 | 301        | 258        | 250 | 19         |
| Mar-07 | 522        | 598 | 330        | 475        | 350 | 16         |
| Apr-07 | 161        | 230 | 316        | 194        | 224 | 21         |
| May-07 | 215        | 145 | 110        | 91         | 39  | 33         |
| Jun-07 | 78         | 52  | 172        | 153        | 103 | 0          |
| Jul-07 | 206        | 61  | 168        | 158        | 100 | 16         |
| Aug-07 | 263        | 171 | 135        | 110        | 72  | 41         |
| Sep-07 | 405        | 202 | 287        | 263        | 206 | 59         |
|        |            |     |            |            |     |            |

Table 11: Variations in alkalinity (mg/L).

| Month  | <b>S</b> 1 | S2   | <b>S</b> 3 | <b>S</b> 4 | S5   | S6  |
|--------|------------|------|------------|------------|------|-----|
| Feb-07 | 1397       | 1129 | 1295       | 1129       | 1397 | 620 |
| Mar-07 | 1409       | 1143 | 1364       | 1178       | 1356 | 690 |
| Apr-07 | 1551       | 1116 | 1329       | 1170       | 1444 | 680 |
| May-07 | 1211       | 1008 | 1054       | 490        | 342  | 703 |
| Jun-07 | 1433       | 971  | 1202       | 1110       | 1110 | 647 |
| Jul-07 | 1376       | 1087 | 1362       | 1214       | 1285 | 748 |
| Aug-07 | 994        | 782  | 860        | 430        | 303  | 549 |
| Sep-07 | 1339       | 1050 | 1184       | 1050       | 1036 | 683 |

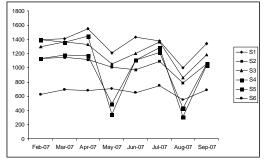
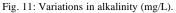




Table 12: Variations in hardness (mg/L).

| Month  | <b>S</b> 1 | S2  | <b>S</b> 3 | S4  | S5  | <b>S</b> 6 |
|--------|------------|-----|------------|-----|-----|------------|
| Feb-07 | 466        | 418 | 432        | 428 | 592 | 360        |
| Mar-07 | 490        | 452 | 444        | 454 | 600 | 380        |
| Apr-07 | 504        | 418 | 418        | 394 | 572 | 410        |
| May-07 | 522        | 496 | 522        | 512 | 464 | 452        |
| Jun-07 | 436        | 412 | 386        | 362 | 472 | 338        |
| Jul-07 | 420        | 390 | 374        | 348 | 488 | 342        |
| Aug-07 | 448        | 464 | 482        | 432 | 438 | 418        |
| Sep-07 | 446        | 484 | 414        | 440 | 446 | 366        |



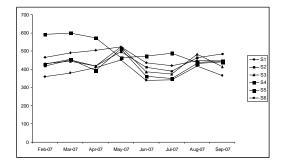



Fig. 12: Variations in hardness (mg/L).

| Month  | <b>S</b> 1 | S2  | <b>S</b> 3 | S4  | S5  | <b>S</b> 6 |
|--------|------------|-----|------------|-----|-----|------------|
| Feb-07 | 383        | 281 | 279        | 259 | 335 | 260        |
| Mar-07 | 360        | 320 | 323        | 299 | 344 | 249        |
| Apr-07 | 382        | 325 | 285        | 278 | 330 | 275        |
| May-07 | 293        | 251 | 238        | 144 | 84  | 297        |
| Jun-07 | 312        | 290 | 327        | 276 | 316 | 251        |
| Jul-07 | 323        | 362 | 316        | 275 | 312 | 262        |
| Aug-07 | 332        | 346 | 352        | 364 | 262 | 246        |
| Sep-07 | 325        | 356 | 324        | 303 | 247 | 256        |

Table 14: Variations in nitrate (mg/L).

| Month  | <b>S</b> 1 | S2   | <b>S</b> 3 | <b>S</b> 4 | S5   | S6   |
|--------|------------|------|------------|------------|------|------|
| Feb-07 | 0.26       | 0.16 | 0.28       | 0.24       | 0.26 | 0.05 |
| Mar-07 | 0.31       | 0.38 | 0.36       | 0.30       | 0.26 | 0.03 |
| Apr-07 | 0.16       | 0.08 | 0.20       | 0.18       | 0.06 | 0.09 |
| May-07 | 0.40       | 0.49 | 0.42       | 0.46       | 0.30 | 0.06 |
| Jun-07 | 0.06       | 0.08 | 0.10       | 0.08       | 0.04 | 0.02 |
| Jul-07 | 0.08       | 0.10 | 0.22       | 0.30       | 0.26 | 0.06 |
| Aug-07 | 0.18       | 0.20 | 0.22       | 0.28       | 0.16 | 0.08 |
| Sep-07 | 0.20       | 0.18 | 0.22       | 0.20       | 0.16 | 0.04 |
|        |            |      |            |            |      |      |

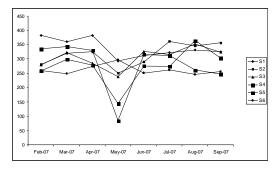



Fig. 13: Variations in chloride (mg/L).

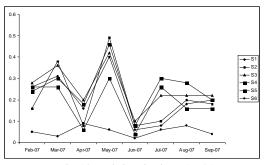



Fig. 14: Variations in nitrate (mg/L).

Table 15: Variations in phosphate. Month **S1** S2 \$3 **S**4 **S**5 **S6** 2.5 2 Feb-07 0.46 0.52 0.70 0.65 0.48 0.55 0.70 0.59 0.67 0.48 0.64 Mar-07 0.66 1.5 Apr-07 1.20 1.36 1.40 1.30 1.26 0.66 May-07 1.801.70 1.90 1.75 1.66 0.96 Jun-07 2.20 2.41 1.98 2.12 0.86 1.12 0.5 Jul-07 2.80 2.40 2.70 2.00 2.60 1.10 0.76 Aug-07 0.56 1.10 1.01 0.68 0.46 Sep-07 1.40 1.46 1.52 1.30 1.10 0.76

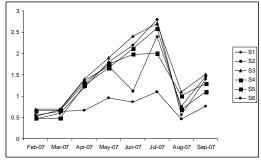



Fig. 15: Variations in phosphate.

concentration of zooplankton wastes (Heron 1961). Use of detergents with long chain phosphate groups has also resulted in excessive phosphorus loading.

With these results, it is observed that Tumkur city sewage physico-chemical characteristics are not significantly higher. So the aeration treatment process is sufficient to reduce the BOD and nutrient level.

## ACKNOWLEDGEMENT

The authors are grateful to Management of Sri Siddhartha First Grade College, Tumkur and Prof. H. N. Vjayendra, Principal for their encouragement. First author is also thankful to Dr. M. B. Nadoni, Prof. C.Vijayabhaskar and Prof. M. S. Jayaprakash for their valuable suggestions, and also grateful to Dr. M. K.Veeraiah, Prof. B. Manjunath and Prof. B. Mallesh of S.S.I.T, Tumkur for providing laboratory facilities.

# REFERENCES

- APHA AWWA WEF 1995. Standard Methods for Examination of Water and Wastewater, 19<sup>th</sup> edition. American Public Health Association, Washington DC.
- Bazzaz, F. A. 1990. The response of natural ecosystem to the rising global CO<sub>2</sub> levels. Annual Review of Ecology and Systematics, 21: 167-196.

Dara, S.S. 2006. A Text Book of Environmental Chemistry and Pollution Control. S. Chand and Co. Publication, New Delhi. Garg, Deepshika, Singh, R.V and Sunitha Goel, 2007. Studies on the status of drinking water quality in Bharathpur area in Rajasthan. Ind. J. Environ. & Ecoplan., 14(1-2): 131-138.

Heron, J. 1961. Phosphorus adsorption by lake sediments. Limnology and Oceanography, 6: 338.

- Maya, C., Raviprasad, G., Krishnaram, H. and Lakshman, M., 2007. Limnological studies on Yellamallappa Chetty lake Banglore. Ind. J. Environ & Ecoplan., 14 (1-2): 115-118.
- Ninave, A.S. 2000. Effect of pollution on inland and costal ecosystems and their impact on fishery resources. Ind. J. Environ. & Ecoplan., 3(2): 197-207.

Sharma, B.K. and Kaur, H. 1998. Water Pollution. Goel Publishing House, Meerut, India.

Sharma, R. D., Neeru Lal and Pathak P.D. 1981. Water quality of sewage drains entering Yamuna at Agra. Ind. J. Environ. Health, 23: 118-122.

Shoukat Ara et al. 2003. Physico-chemical characteristics of Dal lake water of Kashmir valley, India. Ind. J. Environ. & Ecoplan., 7(1): 47-50.

Tchobanoghous, 1979. Wastewater Engineering Treatment, Disposal and Reuse (2<sup>nd</sup> edition), Metcalf-Eddy, Inc., Tata McGraw Hill Pub.Co., New Delhi.

Thirumurty and Fracis Fanthome 1995. Environment under threat. Frank Brothers and Co. Ltd. Publication, Noida (U.P). Wetzel, R.G. 1993. Limnology, 2<sup>nd</sup> edition. Saunders College Publishing, USA. pp. 767.