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ABSTRACT

One of the challenges for hydropower dam operation is the occurrence of supersaturated total 
dissolved gas (TDG) levels that can cause gas bubble disease in downstream fish. Supersaturated 
TDG is generated when water discharged from a dam entrains air and temporarily encounters higher 
pressures (e.g. in a plunge pool) where TDG saturation occurs at a higher gas concentration, allowing a 
greater mass of gas to enter into solution than would otherwise occur at ambient pressures. As the water 
moves downstream into regions of essentially hydrostatic pressure, the gas concentration of saturation 
will drop, as a result, the mass of dissolved gas (which may not have substantially changed) will now 
be at supersaturated conditions. The overall problem arises because the generation of supersaturated 
TDG at the dam occurs faster than the dissipation of supersaturated TDG in the downstream reach. 
Because both generation and dissipation of TDG are functions of water temperature, there is an 
opportunity to affect the TDG process through selective withdrawal structures at a reservoir. Using a 
combination of field observations, and hydrodynamic modelling, we analysed the dependence of the 
water temperature difference on TDG generation from different-elevation release structures of high-
dam reservoirs. By using of the dissipation model coupled with TDG and temperature, the evolution 
of supersaturated TDG from different withdrawal structures was simulated and compared in a natural 
river reach. It showed that warmer withdrawals result in reduced generation of TDG and enhanced 
dissipation of TDG.

INTRODUCTION

Water temperature is an amazing controlling factor that 
affects water quality and aquatic system in many aspects, 
such as the activity of microorganisms, the mass transfer 
of dissolved gas, and the suitability of habitats for aquatic 
organisms. The increasing number of dam constructions and 
operations are causing distinct spatial and temporal changes 
in the water temperature (Deng et al. 2011). Temperature 
stratification is one of the dominant characteristics of large 
and deep reservoirs. According to the literature (Deng 2003), 
the temperature difference between the surface and the bottom 
layer in a reservoir may reach as high as 17°C. To reduce the 
negative effects on aquatic organisms, various mitigation 
measures, such as stoplog intake and eco-regulation strategies, 
have been implemented (Deng et al. 2011, Chen et al. 2016). 
The temperature-related responses have aroused more public 
concern, among which is the response of supersaturated total 
dissolved gas (TDG) to temperature changes. 

TDG supersaturation (TDGS) is an adverse impact 
caused by spill discharge from reservoirs, which is widely 
understood to cause bubble disease and thereby increase 

fish mortality (Weitkamp et al. 2003, Liang et al. 2013, 
Xue et al. 2019). Many studies have been performed on 
the evolution of TDGS and its mitigation strategies (Pol-
itano et al. 2012, Urban et al. 2008, Yingzhu et al. 2018). 
Li et al. (2009) proposed that two processes are involved 
in the TDGS problem of large dams. The first process is 
the generation process of TDGS, in which excessive air is 
dissolved under high pressure. The second consequent pro-
cess is the dissipation process, in which the supersaturated 
TDG dissipates from water in the downstream river. Shen 
(2014) conducted experiments to explore the effect of water 
temperature on supersaturated TDG dissipation in static and 
turbulent conditions. Ou (2016) carried out experiments in 
both a straight flume and a converted flume to study the 
relationship between the dissipation coefficient and temper-
ature in flowing water. However, before the present work, 
no investigation has provided insight into the quantitative 
response of TDGS to the water temperature stratification 
related to the reservoir operation. Determining the rela-
tionship between TDGS and water temperature variation 
is not only a practical but also a theoretical challenge for 
improving high dam operations.
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With respect to the two processes of TDGS, both air 
dissolution and degasification are closely related to the water 
temperature. Herein, the paper will describe the response of 
TDG supersaturation to water temperature changes in each 
process. 

RESPONSE OF SUPERSATURATED TDG 
GENERATION TO TEMPERATURE CHANGES

The generation extent of TDGS is closely related to the air 
solubility at a specific pressure and temperature in a plunge 
pool. Therefore, we first examine the air solubility depend-
ence on temperature and then discuss the effect of water tem-
perature regulation on the generation of supersaturated TDG. 

Air Solubility in Terms of Temperature

It is well understood that the solubility of dissolved gas 
decreases as the temperature is increased under specific pres-
sure and salinity (Colt 1984). The air solubilities of oxygen, 
nitrogen, and carbon dioxide, in units of mg/L, as a function 
of temperature are presented in Fig. 1. The data indicate that 
the air solubility varies with the change in temperature. For 
example, the solubility of oxygen at barometric pressure 
is 14.6 mg/L, 9.1 mg/L, and 6.4 mg/L at 0°C, 20°C, and 
40°C, respectively. The total dissolved gas concentration 
at barometric pressure is 39.6 mg/L, 25.1 mg/L, and 18.0 
mg/L at 0°C, 20°C, and 40°C, respectively. The percentage 
of dissolved gas saturation level is defined as the ratio of 
the actual gas concentration to its solubility at a specific 
temperature. The gas concentration (in mg/L) is expected to 
be different, even if the per cent TDGS level under different 
water temperature conditions is equal. 

Effect of Water Temperature Regulation on the 
Generation of TDGS

In engineering practice, discharges from different elevations 
of a reservoir usually exhibit different temperatures. Herein, 
we consider two typical reservoirs as examples to analyse 
the contribution of the water temperature difference to TDG 
generation.

Pubugou reservoir in Daduhe River: The Pubugou hydro-
power station is located at the middle of the Daduhe River. 
The maximum height of the dam is 186 m, and the backwater 
length is 72 km. The authors conducted field observations 
on the water temperature and the TDG from 2012 to 2013. 
Fig. 2 illustrates the distribution of water temperature in 
the Pubugou reservoir in August. The water temperature is 
vertically stratified obviously. 

The open spillway and the bottom spillway tunnel are 
the main release structures of the Pubugou hydropower 
station, for which the crest elevations are 833 m and 795 m, 
respectively. According to the observed results of the water 
temperature in 2012, the temperatures corresponding to the 
inlet of the open spillway and the bottom spillway tunnel are 
21.4°C and 17.3°C, respectively. The temperature difference 
is approximately 4.1°C. 

A TDG supersaturation level of 127% was observed 
during the discharge of the bottom spillway tunnel, with a 
flow rate of 2195 m3/s. As the flow rate of 2195 m3/s didn’t 
occur during the operation practice of the open spillway, 
the TDG level under the same discharge rate was failed to 
obtain. To compare the sole temperature effect on TDGS, it 
is reasonable to assume that the open spillway exhibits the 
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Fig. 1: Solubility of the air compositions and the total dissolved gas versus temperature. 

Effect of Water Temperature Regulation on the Generation of TDGS 
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Fig. 1: Solubility of the air compositions and the total dissolved gas versus temperature.
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same TDG level, 127%, with the bottom spillway tunnel. 
Hence the TDG concentration in mg/L can be obtained by 
multiplying the TDG solubility at the corresponding temper-
ature by the TDG level of 127%. According to Fig. 1, the 
TDG solubility at 21.4°C is 24.4 mg/L and that at 17.3°C 
is 26.4 mg/L. Thus, the TDG concentrations in mg/L of the 
open spillway and the bottom spillway tunnel are determined 
to be 31.0 mg/L and 33.5 mg/L, respectively. The absolute 
TDG difference is 2.5 mg/L, which is equivalent to 8.1% 
of the TDG quantity of the open spillway. The reason for 
the difference is the TDG solubility difference caused by 
the temperature difference. According to previous studies, 
a higher level of TDG generation causes a larger adverse 
impact on TDG (Li et al. 2013). Therefore, with respect to 
TDG generation, discharge from the open spillway is more 
advisable than that from the spillway tunnel.

Baihetan reservoir in Jinshajiang River: The Baihetan hy-
dropower station is a high-dam hydropower station currently 
under construction on the Jinshajiang River. The maximum 
height of the dam will be 289 m and the backwater length 

will be 182 km. Six surface orifices and seven bottom orifices 
will be included on the on-dam release structures for flood 
discharge, and the crest elevations will be 810 m and 714 m, 
respectively. The predicted temperature distributions in the 
reservoir for different typical years were obtained by the use 
of a laterally averaged numerical simulation model (SKLH 
2013). Fig. 3 depicts the temperature distribution in the res-
ervoir in September of a dry year. The predicted water tem-
perature corresponding to the depths of the surface orifices 
and the bottom orifices are 24.8°C and 20.8°C, respectively. 

According to Fig. 1, at barometric pressure, the air dis-
solubility at 24.8°C and 20.8°C is 22.93 mg/L and 24.67 
mg/L, respectively. The difference in TDG concentration is 
1.74 mg/L, and the relative difference is approximately 7.6%. 
According to the predicted results of TDG supersaturation 
caused by the release structures (SKLH 2008), the percentage 
level of TDG supersaturation at the exit of the plunge pool 
will be as high as 140% when the dam discharges. Assuming 
that the supersaturation value of 140% is valid for both the 
surface-orifice discharge and the bottom-orifice discharge, 
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Fig. 4: Comparison of the TDG level between the calculated and observed results in the 

Jinshajiang River. 

Case Description 

Using the discharge of the Baihetan hydropower station as an example, the 

morphological data were employed to simulate the dissipation process of TDGS at 

different temperature conditions. The simulation cases and the boundary conditions 

are listed in Table 1. 

Table 1: Simulation cases and boundary conditions of the Baihetan hydropower station. 

Case No. 
Discharge 

Structure 

Discharge temperature 

(℃) 

TDG level in per 

cent (%) 

TDG level 

(mg/L) 

1 Surface orifice 24.8 140 32.10  

2 Bottom orifice 20.8 140 34.54 

Fig. 4: Comparison of the TDG level between the calculated and observed results in the Jinshajiang River.
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Fig. 2: Observed vertical temperature 1400-m Fig. 3: Predicted vertical temperature upstream                           Fig. 3: Predicted vertical temperature upstream of the dam  
      in the Baihetan Reservoir  (Mid-September, Dry year).

Fig. 2: Observed vertical temperature 1400-m  of upstream 
the dam in the Pubugou Reservoir (Mid-August, 2012).
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the equivalent TDG contents at 24.8°C (surface orifice) and 
20.8°C (bottom orifice) are 32.10 mg/L and 34.54 mg/L, 
respectively. The difference of the TDG concentrations for 
the surface-orifice discharge and the bottom-orifice discharge 
is as high as 2.45 mg/L due to the temperature difference, 
which is equivalent to 7.6% of the TDG level at the surface 
orifice. For this reason, discharge from the surface orifices is 
more advisable than that from the bottom-orifices.

RESPONSE OF THE SUPERSATURATED TDG 
DISSIPATION PROCESS TO TEMPERATURE 
CHANGES

During the transport of the TDG-supersaturated discharge 
flow downstream, the water temperature changes as it travels 
due to the effects of solar radiation and heat transfer with 
air. In response to the change in water temperature, the gas 
solubility and the dissipation rate of supersaturated TDG 
changes, consequently resulting in different dissipation 
processes of the TDG. 

Using the discharge flow from the Baihetan hydropower 
station as an example, a 1-D model was employed to simulate 
the dissipation process of TDGS at different temperature 
conditions. 

Prediction Model 

The model couples hydrodynamics, temperature and TDG. 
The governing equations are as follows:

Continuity equation:
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Fig. 5: Evolution of the temperature in the Jinshajiang River downstream of the Baihetan Dam. 

As a function of velocity and water depth, the TDG dissipation coefficient of the 

Jinshajiang River downstream of the Baihetan Dam was calculated according to 

equation (6), as derived by Feng et al. (2014), and the results are shown in Fig. 6. The 

coefficient values fluctuate in the range of 0.03 h-1~0.09 h-1 for the surface discharge 

and 0.02 h-1~0.07 h-1 for the bottom discharge. The maximum difference of the 

coefficients of the two discharges is 0.018 h-1 at the section 123-km downstream of 

the dam.  

Fig. 5: Evolution of the temperature in the Jinshajiang River downstream of the Baihetan Dam.
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According to equation (5), the TDG dissipation coef-
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200 km is 0.8°C for the bottom discharge and 0.97°C for 
the surface discharge. The temperature increase along the 
river reach is very small due to the large flow rate and the 
high water depth. This result indicates that the impact of 
the temperature difference from different release structures 
continues for a very long distance from the dam. 

As a function of velocity and water depth, the TDG dis-
sipation coefficient of the Jinshajiang River downstream of 
the Baihetan Dam was calculated according to equation (6), 
as derived by Feng et al. (2014), and the results are shown in 
Fig. 6. The coefficient values fluctuate in the range of 0.03 
h-1~0.09 h-1 for the surface discharge and 0.02 h-1~0.07 h-1 
for the bottom discharge. The maximum difference of the 
coefficients of the two discharges is 0.018 h-1 at the section 
123-km downstream of the dam. 

The evolution of the TDG per cent saturation level for 
each discharge case is presented in Fig. 7. The dissipation 
process of TDG from the surface discharge is significantly 
faster than that of the bottom discharge. The percentage of 
the TDG saturation level of the surface discharge decreases 
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Table 1: Simulation cases and boundary conditions of the Baihetan hydropower station.

Case No. Discharge Structure Discharge temperature (°C) TDG level in per cent (%) TDG level (mg/L)

1 Surface orifice 24.8 140 32.10 

2 Bottom orifice 20.8 140 34.54



744 Lei Tang et al.

Vol. 19, No. 2, 2020 • Nature Environment and Pollution Technology  

27.9% within 200 km, whereas that of the bottom discharge 
decreases 24.0% within 200 km. The maximum difference 
of the TDG level at 200-km downstream of the dam is 3.9%, 
which is equivalent to 16% of the TDG dissipation of the 
bottom discharge.

The water temperature is a governing factor in both TDG 
generation and dissipation. Spills from different elevations 
result in different generation and dissipation processes of 
TDG. With respect to TDGS, the use of release structures 
at the surface is recommended to discharge floods due to the 
higher temperature near the surface of the reservoir. This 
result demonstrates that TDGS can be mitigated further by 
exploring temperature-based operational regulations. 

CONCLUSIONS

The development of hydropower stations and reservoirs 
causes distinct spatial and temporal changes in water tem-
perature. For high dam hydropower stations, the release 
structures are designed to be at different elevations. Due to 
the temperature stratification for large and deep reservoirs, 
the spill from different release structures may exhibit dif-
ferent water temperatures. This temperature difference can 
not only result in different TDG generation levels but can 
also affect the dissipation rate and per cent saturation level 
in terms of dissolubility. 

According to the temperature stratification results of the 
Pubugou and Baihetan reservoirs, the water temperature dif-
ference from different release structures was approximately 
4°C. The relative difference of the TDG generation from 
the different release structures of the Pubugou and Baihetan 
reservoirs was analysed to be approximately 7.6% and 8.1%, 
respectively, due to the temperature difference. 

By using the discharge of the Baihetan high dam as an 
example, the dissipation processes of supersaturated TDG 

from different release structures at different water tempera-
tures were simulated employing a proposed numerical model. 
Two different dissipation processes of TDG were obtained. 
The difference of the TDG per cent saturation levels at 200-
km downstream of the dam is 3.9%, which is equivalent to 
16% of the TDG decrement of the bottom discharge. This 
result demonstrates that water temperature plays an important 
role in the TDG dissolubility, both in the dissipation rate 
and the per cent saturation level. The response of TDG to 
water temperature changes implies that water temperature 
changes should be taken into account in the study of the TDG 
supersaturation problem of high dam discharges. 

Discharges from different elevations exhibit different 
TDG generation and dissipation processes. With respect to 
TDG supersaturation, the use of release structures at higher 
elevations is recommended for discharge due to the elevated 
temperature near the surface of the reservoir. This recom-
mendation implies that the temperature-based operational 
regulation is an effective approach to minimize the effect of 
TDG supersaturation. 
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