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ABSTRACT
Surface water is the most important and common water resource on earth. Accurate and effective 
mapping and detecting of surface water have been made possible by remote sensing technology, high-
resolution satellite data, playing an important role in surface water monitoring and mapping, which has 
become the current hot research for water information extraction in recent decades. Therefore, in this 
paper, we tested and analysed four models to extract water bodies using China’s GF-2 HD satellite (GF-
2) image, including Normalized Difference Water Index (NDWI), Modified Shadow Water Index (MSWI), 
Support Vector Machine (SVM) and Object-Oriented Method (OOM). The results showed applying 
water extraction models can map surface water with an overall accuracy of 0.8935, 0.9256, 0.9467 and 
0.9357, respectively. SVM owns the highest overall accuracy value of 0.9467, followed by OOM. SVM 
performed significantly better at surface water extraction with kappa coefficients improved by 9.00%, 
5.00%, and 2.00%, respectively, which yielded the best results and used to map surfaces water bodies 
in the study region, while index methods (NDWI and MSWI) are mostly classified into the water and 
non-water information based on a threshold value, with higher total omission and commission errors at 
12.45%, 25.64%, 6.38% and12.87%, respectively. Therefore, we proposed SVM as the best algorithm 
to identify water body and effectively detect surface water from the GF-2 image. 

INTRODUCTION

Surface water is one of the vital components of the earth’s 
environment, which is not only the essential for the sur-
vival of living beings (Vorosmarty et al. 2000), but also is 
the important basic information for land use/cover change 
(LUCC), climate changes, seasonal changes, and environ-
mental changes throughout of the world (Alamgir et al. 2016, 
Araral & Wu 2016). Therefore, knowledge of the spatial 
distribution of surface water is imperative for assessment 
of water resources, watershed changes, land surface water 
management and environmental monitoring (NRC 2008, Sun 
et al. 2012). Besides, timely monitoring and delivering data 
on the dynamics of surface water are essential for policy and 
decision-making processes (Frey et al. 2010), especially for 
monitoring floods risk at an emergency. 

Remote sensing has advantages of the macroscopic, 
real-time, periodic repeatability, dynamic access to the land 
surface information (Lu et al. 2011), which can provide low-
cost and reliable information for environmental changes at 
local, regional, and global scales, with their long-collected 
repeatable and even real-time data (Melesse et al. 2007, 

Lee et al. 2018). Waterbody information, as an important 
constituent of remote sensing image, has become the vi-
tal national geo-information and can be automatically or 
semi-automatically extracted by integrating remote sensing 
data with geographic information systems (GIS). Meanwhile, 
in recent decades, accurate and effective extracting water 
from remote sensing data has become indispensable ways 
for the development and utilization of water resources (Du 
& Zhou 1998), which also becomes an important branch of 
remote sensing applications.

Due to the ease of processing and obtaining satellite 
image data (Masocha et al. 2018), numerous surface water 
extraction algorithms have been developed and applied for re-
motely sensed imageries (Borton 1989), which focused on the 
following satellite sensors with the different spatial, temporal 
and spectral resolution, including the Moderate-Resolution 
Imaging Spectro-radio-meter (MODIS) (Khandelwal et al. 
2017, Ovakoglou et al. 2016), Satellite Pour l’ Observation 
dela Terre (SPOT) (Ji et al. 2009), Advanced Spaceborne 
Thermal Emission and Reflection Radiometer (ASTER) 
(Huang et al. 2008 ), Advanced Very High Resolution Ra-
diometer (AVHRR) (Zhou et al. 1996), Thematic Mapper 
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series data (MSS,TM,ETM+ and OLI) (Acharya et al. 2018, 
Alanazi & Ghrefa 2013, Alesheikh et al. 2007, Senay et al. 
2016, Wang et al. 2018, Yang et al. 2010, Zhang et al. 2016), 
and others (Lu et al. 2011, Peng et al. 2018, Wang et al. 
2012). Besides, although many studies have been conducted 
most of large surface water are limited to small water bodies, 
such as small ponds, narrow rivers, and shallow water at the 
edge of rivers, which accurately cannot be extracted due to 
the limited spatial resolution.

In the recent decade, with the improvement of the spatial 
resolution, visiting time and spectral resolution of remote-sens-
ing images, more and more high-resolution satellite data can 
be widely applied to extract and map surface water, such 
as Chinese Gaofen-1/2, Quick-Bird, WorldView, IKONOS, 
Rapid Eye and so on (Sawaya et al. 2003, Wasowski et al. 
2012, Tatar et al. 2018). In addition, the study on water body 
extraction from GF-1/2 series images has become a hot re-
search topic in China (Chen et al. 2015, Li et al. 2015, Peng 
et al. 2018, Song et al. 2015), though several studies have 
tested the performance of water indices using GF-2 sensor in 
China (Liu et al. 2019, Zou et al. 2019). However, this new and 
advanced sensor has, unfortunately, not been exploited to map 
surface water at county scales in Northeast China, especially 
at Ussuri River between China and Russia.

Hence, in this paper, the algorithms have been proposed 
for identifying water bodies with GF-2 including water body 
index methods (Normalized Difference Water Index, NDWI, 
Modified Shadow Water Index, MSWI), supervised classi-
fication methods (Support Vector Machine method, SVM) 
and others methods (Object-Oriented Method, OOM). The 
objectives of this study are: to apply the different methods 
to obtain the surface water information by comparing with 
water body index, SVM and OOM, to detect and map land 
surface water in Northeast China region qualitatively and 
quantitatively, to achieve the suitable method to extract 
surface water from the evaluation accuracy.

MATERIALS AND METHODS

Study Region 

The Ussuri River is the boundary river between China and 
Russia (Fig. 1). The study area is located at the confluence 
of the Heilongjiang (Amur) River and Ussuri River, which 
belonged to transboundary regions and located between 
47°53’ N-48°10’ N latitude and 132°47’ E-133° 9’ E longi-
tude. It belongs to the continental monsoon climate with the 
annual precipitation of 532.7 mm, the average accumulated 
temperature is 2435 degrees. The study region is covered by 

especially at Ussuri River between China and Russia. 
Hence, in this paper, the algorithms have been proposed for identifying water bodies with 

GF-2 including water body index methods (Normalized Difference Water Index, NDWI, 
Modified Shadow Water Index, MSWI), supervised classification methods (Support Vector 
Machine method, SVM) and others methods (Object-Oriented Method, OOM). The objectives 
of this study are: to apply the different methods to obtain the surface water information by 
comparing with water body index, SVM and OOM, to detect and map land surface water in 
Northeast China region qualitatively and quantitatively, to achieve the suitable method to 
extract surface water from the evaluation accuracy. 

MATERIALS AND METHODS 

Study Region  
The Ussuri River is the boundary river between China and Russia (Fig. 1). The study area is 
located at the confluence of the Heilongjiang (Amur) River and Ussuri River, which belonged 
to transboundary regions and located between 47°53' N-48°10' N latitude and 132°47' E-133° 
9' E longitude. It belongs to the continental monsoon climate with the annual precipitation of 
532.7 mm, the average accumulated temperature is 2435 degrees. The study region is covered 
by marsh plain with black soil, which is suitable for all kinds of crop cultivation, and there are 
a small number of mountainous areas scattered in the plain, covered with forest and elevation 
range from 45 m to 65 m, the regional terrain is high in the southwest and low in the northeast.  
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marsh plain with black soil, which is suitable for all kinds of 
crop cultivation, and there are a small number of mountainous 
areas scattered in the plain, covered with forest and elevation 
range from 45 m to 65 m, the regional terrain is high in the 
southwest and low in the northeast. 

GF-2 Image Preprocessing

In the study, the GF-2 images (L1A products) containing 
a panchromatic image with a resolution of 0.8 m and mul-
ti-spectral image with a resolution of 4m, were acquired on 
September 12th, 2015. The parameters of the data within the 
study area collected are given in Table 1. Meanwhile, the 
high-resolution satellite imagery of GF-2 had a good quality 
of small cloudy and was orth-rectified by using the rational 
polynomial coefficient (RPC) model within remote sensing 
software ENVI 5.3. The average root mean square (RMS) 
value was less than 0.5 pixels for each image. Meanwhile, 
each image was projected to UTM (Zone 53N) with WGS-
84 datum, the ground control points were obtained from the 
same aerial photograph image and Google map, the mul-
ti-special data were calibrated with the radiometric calibra-
tion tool in ENVI from raw digital number (DN) to surface 
reflectance values, and then the atmospheric correction was 
applied using the Fast Line-of-Sight Atmospheric Analysis 
of Spectral Hypercubes (FLAASH) module.

Normalized Difference Water Index (NDWI)

Using the Landsat TM image, the normalized-difference wa-
ter index (NDWI) is a normalized ratio index between green 
and NIR bands (Yao et al. 2015), which was first formulated 
by McFeeters to detect surface waters in wetland environ-
ments and measure surface water dimensions (Mcfeeters 
1996). While all negative NDWI values were categorized 
as non-water and all positive values as water by imposing a 
threshold value of zero for the value of NDWI. The NDWI 
was calculated as follows:
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er, the model of MSWI was applied for the extraction of water 
bodies from GF-2, which is defined in Eq. 2.
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Where, B1 and B4 represent the reflectance in the blue 
band and NIR band on GF-2 image, respectively. N is the 
experimental threshold of the water body in the study region, 
which can discriminate between water and non-water and 
need a lot of experiments and visual comparison.

Support Vector Machine (SVM)

SVM is a supervised learning system and is based on recent 
improvements in statistical learning theory (Cristianini & 
Shawe 2000). Due to this method with the advantage of min-
imizer errors and maximiser, the geometric characteristics of 
edge areas, multi-class support vector machine (SVM) clas-
sification for water body extraction and coastline detection 
has been commonly used by many researchers (Nath et al. 
2010, Sarp & Ozcelik 2016, Zhang et al. 2013). However, the 
research for water extraction on GF-2 image is less, therefore, 
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in this paper, SVM with kernel function and regularization 
parameters was used as a quantitative method to extract the 
water body form the GF-2 image.

Object-Oriented Method (OOM)

In contrast to pixel-based image classification techniques, 
object-based image analysis methods provide additional 
information that can be used to improve the discrimination 
of land cover classes (Yan et al. 2006), which were discussed 
by several researchers for water body extraction (Kaplan et 
al. 2017, He et al. 2016, Yue et al. 2010), especially using 
object-oriented segmentation and classification methods 
for automated delineation of lakes (Johansson et al. 2013, 
Rishikeshan et al. 2018, Selmes et al. 2011). While using 
Feature Extraction (FE) module remote software ENVI 5.3 
in this study area, an object-oriented classification method 
was utilized to segment the GF-2 image into small objects 
and to obtain the water body information.

RESULTS AND DISCUSSION 

Water Maps Analysis

Visually, applying by the four water extraction methods in the 
study region, the Fig. 2 not only shown the similar patterns of 
water bodies but also lighted the differences between water 
and non-water areas. NDWI separates water and non-water 

objects well at the large scale of surface water region, which 
can keep the integrity of large river water information with a 
clear and accurate boundary outline. However, in the region 
of shadows and artificial building areas, dark shadows and 
water were often misidentified by water indices of NDWI 
(Yao et al. 2015), where the accuracy of water information 
acquiring was low and could not eliminate the effects of 
shadows. In this paper, a series of experimental thresholds of 
MSWI between water and non-water areas were firstly tested 
to generate the water body, then combing MSWI with DEM 
data to extract water body from the GF-2 image in the study 
region. It seems that MSWI can effectively distinguish water 
from non-water surfaces and keep the continuity and integrity 
for a large water body in some degree, which can eliminate 
some shallows of building-up land and unused land with 
lower commission errors. However, the discontinuities out-
line of the small river still occurs. NDWI and MSWI images 
classified into the water and non-water information based on 
threshold value selection, the threshold value of water region 
for NDWI is greater than zero, whereas threshold value on 
MSWI is near to -0.5. The extraction results of NDWI and 
MSWI models are not very good, because they not only can 
often mistakenly identify shadow as water bodies, but also 
can completely omit some of the small water regions (small 
ponds, narrow rivers, and shallow water) from GF-2 images 
using a lower threshold. SVM, based on the image pixel 
level and spectral characteristics of remote sensing image, 

identify shadow as water bodies, but also can completely omit some of the small water regions 
(small ponds, narrow rivers, and shallow water) from GF-2 images using a lower threshold. 
SVM, based on the image pixel level and spectral characteristics of remote sensing image, is 
applied to extract the water body by selecting the training samples. Comparing to the NDWI 
and MSWI, SVM can well and effectively offer a complete water map for study area from the 
GF-2 by lowering the mixing of water and non-water in small rivers, small ponds, bare land 
and shallow areas. Besides, it can increase the accuracy of the water body extraction by fewer 
impacts on shadows and artificial building areas. OOM, using the spectral and spatial texture 
information during the process of multi-scale segmentation (Sun et al. 2018), keeps the 
maximum homogeneity between water and non-water information, and exactly identify water 
body with slightly smoother in water boundary, which avoids the phenomenon of "salt and 
pepper" and can detect the small ponds and rivers. However, the phenomenon of broken lines 
for small river still occurred. Furthermore, SVM and OOM methods can extract small ponds 
and small waters with complete shapes from GF-2 data, whereas NDWI and MSWI can mostly 
omit them. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2: Results of surface water information extraction for 4 methods from GF-2 image. 
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is applied to extract the water body by selecting the training 
samples. Comparing to the NDWI and MSWI, SVM can 
well and effectively offer a complete water map for study 
area from the GF-2 by lowering the mixing of water and 
non-water in small rivers, small ponds, bare land and shal-
low areas. Besides, it can increase the accuracy of the water 
body extraction by fewer impacts on shadows and artificial 
building areas. OOM, using the spectral and spatial texture 
information during the process of multi-scale segmentation 
(Sun et al. 2018), keeps the maximum homogeneity between 
water and non-water information, and exactly identify wa-
ter body with slightly smoother in water boundary, which 
avoids the phenomenon of “salt and pepper” and can detect 
the small ponds and rivers. However, the phenomenon of 
broken lines for small river still occurred. Furthermore, SVM 
and OOM methods can extract small ponds and small waters 
with complete shapes from GF-2 data, whereas NDWI and 
MSWI can mostly omit them.

No-water Information Analysis 

In this paper, the unused land (mining wasteland), build-
ing-up land and shadow area were selected as the typical 
samples to analyse the impact on water body extraction 
methods. A total of 200 pure pixels were selected from the 
GF-2 imagery for each type, which are shown in Fig. 3. As 
far as the unused land is concerned, the commission errors 
of NDWI were most serious, in which some land was almost 
mistakenly classified by water body, whereas a part of un-
used land was misclassified as surface water by MSWI. In 

contrast, the performance of SVM and OOM is better than 
that of NDWI and MSWI. In fact, the influence on water 
body extraction accuracy of NDWI and MSWI, a suitable 
threshold value selection is applied. In order to modify the 
classification errors in water extraction, in next step, the best 
way for NDWI and MSWI is to select the optimum thresh-
old values. The Fig. 3 showed that nearly all the regions of 
built-up land were mistakenly identified as water bodies with 
the worst commission errors by using NDWI, followed by 
MSWI. It is possible to describe built-up areas as surface 
water due to the similar positive index values, while SVM 
and OOM are superior to that of NDWI and MSWI. It seems 
that SVM and OOM can effectively suppress the built-up 
land noises which were easily misidentified by NDWI and 
MSWI, and OOM  showed the best results for the artificial 
construction, whereas a very small number of building  
shadows were wrongly identified as water bodies. From 
various water body extraction models in this study, the 
shadow areas are wrongly classified into water information 
at different levels. Compared with all the methods, the NDWI 
had mistaken all the shadow regions into water bodies and 
showed the worst water extraction accuracy, followed by 
MSWI. On the contrary, the OOM showed the highest accu-
racy by mistakenly classifying shadows into surface water on 
shadow regions, the presence of shadows in the images may 
cause misclassification due to similar spectral reflectance 
patterns as water body areas (Sarp & Ozcelik 2016), while 
it indicated that the OOM was more vulnerable to shadow 
pixels than the other method in some way.
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bodies and showed the worst water extraction accuracy, followed by MSWI. On the contrary, 
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Fig. 3: Detail contrast of water extraction results from no-water objects. 
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Fig. 3: Detail contrast of water extraction results from no-water objects.
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Water Extraction Accuracy

To test the accuracy of the water extraction in different 
models, we used images with the Gram-Schmidt spectral 
sharpening method to obtain the higher resolution image 
of 0.8 m. According to the scope of the research region 
within Chinese territory, combing the field survey data of 
water and non-water with GPS information (Garmin) of the 
study area, we examined 60 selected check-points (Fig. 4). 
Meanwhile, the water extraction information was applied to 
the ArcGIS 10.3 as the background data, we imported the 
field data into the ArcGIS software as the ground truth in 
shape format, based on the confusion matrix method, four 
accuracy measures are applied to evaluate the performance 
of water indices including overall accuracy and kappa coef-
ficient. Compared to the results of different water extraction 
methods, the accuracy evaluations of the GF-2’S results are 
listed in Table 2.

The Table 2 shows that the accuracy assessment of wa-
ter extraction methods, in which the SVM gave the highest 
overall accuracy of 94.68 % and with Kappa coefficient at 
0.87, followed by OOM, with overall accuracy and Kappa 
coefficient of 93.57% and 0.85, respectively, while the NDWI 

showed the worst overall accuracy at 89.35%, with Kappa 
coefficient of 0.78. In addition, the SVM showed the best 
performance with the highest accuracy in water extraction, 
followed by the OOM, which have the 1.11% and 0.02 higher 
than those of the OOM for overall accuracy and Kappa coef-
ficient, respectively. Meanwhile, the third highest accuracy 
was the MSWI at 92.56% of overall accuracy and at 0.82 of 
the Kappa coefficient.

The properties of surface water vary with seasonal and 
even daily changes, due to the angle of the sun, radiation 
hours and atmospheric composition impacts (Feyisa et al. 
2014, Yang et al. 2015a, 2015b). Compared with other water 
extraction methods in this test site,the NDWI can quickly 
extract water body information form the GF-2 image , wherea 
performed the worst surface water extraction accuracy at 
89.35%. In addition, the surface water total errors of omis-
sion and commission were lowest at 12.45% and 25.64%, 
respectively (Table 3). Especially in the region of building 
areas, shadows and unused land were wrongly identified 
as surface water. According to the previous research (Ji et 
al. 2015, Xiong et al. 2018, Masocha et al. 2018), it seems 
that NDWI was suitable for simple water body extraction 
in multi-spectral 30m resolution image of Landsat TM and 

Water Extraction Accuracy 
To test the accuracy of the water extraction in different models, we used images with the Gram-
Schmidt spectral sharpening method to obtain the higher resolution image of 0.8 m. According 
to the scope of the research region within Chinese territory, combing the field survey data of 
water and non-water with GPS information (Garmin) of the study area, we examined 60 
selected check-points (Fig. 4). Meanwhile, the water extraction information was applied to the 
ArcGIS 10.3 as the background data, we imported the field data into the ArcGIS software as 
the ground truth in shape format, based on the confusion matrix method, four accuracy 
measures are applied to evaluate the performance of water indices including overall accuracy 
and kappa coefficient. Compared to the results of different water extraction methods, the 
accuracy evaluations of the GF-2’S results are listed in Table 2. 
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moderate-resolution image of MODIS data by band calcula-
tions; whereas it could realize the surface water automation 
extraction under the demands of lower accuracy, we can 
conclude that NDWI was not recommended to obtain water 
body in GF-2 images.

The total omission and commission errors of MSWI at 
6.38% and 32.87%, respectively, compared to the NDWI, the 
MSWI not only extracted the small and tiny water bodies with 
the faster speed but also kept the complete shape of water 
that conformed to the actual geographical distribution, which 
can quickly obtain the surface water from remote sensing 
data and is suitable for hydrological emergency monitoring. 
However, this algorithm cannot distinguish between shadow 
pixels and water pixel in some regions. Also, the water ex-
traction accuracy mainly relies on the experimental thresh-
old value selection which is influenced by the subjective 
judgment of the researcher. Demands for lower accuracy of 
water monitoring and water emergency like flood risks, we 
propose this method for extracting surface water.

SVM, with the total omission and commission errors of 
5.31% and 6.75%, respectively, can improve the water ex-
traction accuracy and speed from GF-2 images, we propose 
this method as the best way to identify water bodies and 
effectively detect surface water in the study region. Great 
influence on water extraction speed of this model is related 
to the number of sample selections, while some region as-
sociated with classifying mixed pixels of shadow occurred 
the small omission errors.

The total omission and commission errors of OOM 
were similar to that of SVM, the water extraction results of 
OOM also could supply the demands for the department of 
water administration in detecting surface water. However, 
during the water extraction procession from high-resolution 
remote sensing image, applying the segmentation level and 
the merging level was mostly evaluated by the experimental 
threshold, comparing with SVM, which is greatly affected 
by manual interventions and cost more time with lower 
inefficiency. Therefore, it was not available for water body 
extraction and detecting surface water in the emergency. 
Although applying the Chinese high-resolution images to 
study water body extraction was relatively less, in the future, 
we would make full use of the spatial, spectral and texture 

attributes of GF-2 multi-spectral high-resolution and apply 
new algorithm to extract water body, especially focused on 
the panchromatic image.

CONCLUSIONS 

In this paper, the boundary river of Ussuri River of Tongjiang 
section between China and Russia was taken as the research 
region. Using GF-2 multi-spectral high-resolution remote 
sensing imagery of China government, we conducted the 
study by applying four methods for surface water extraction. 
Our results showed that all the models can extract large wa-
ter body information to some degree, the results of NDWI 
models are not very good because some small water bodies 
could not be effectively extracted from GF-2 images. On the 
countrary, the performances of surface water extraction of 
study region indicate that the methods of SVM and OOM 
are suitable for detecting and updating surface water bodies 
from GF-2 images when compared to the other indices.We 
can conclude that NDWI methods are suitable for surface 
water extraction from Landsat TM or MODIS images.

Compared with classification results of a water body, 
SVM algorithms can extract surface water information more 
accurately than the other methods, which gives the highest 
overall accuracy of 94.68 % and with Kappa coefficient at 
0.87, followed by OOM. While the NDWI can quickly extract 
water body information form the GF-2 image, which owes 
the highest omission and commission errors of 12.45% and 
55.64%, respectively, followed by MSWI. Therefore, we 
proposed the SVM method as the best way to identify the 
water body and to effectively detect surface water in the 
study region. Further study is needed in GF-2 image for water 
information extraction in the future, we would make full use 
of the spatial, spectral and texture attributes of GF-2 mul-
ti-spectral high-resolution and apply new algorithm to extract 
water bodies, especially focused on the panchromatic image.

ACKNOWLEDGEMENT 

We appreciate the staff of the platform for Wuzhishan Eco-
logical Station, 3S laboratory of Hainan University and Key 
Laboratory of Germplasm Resources of Tropical Special Or-
namental Plants of Hainan Province and Haikou Urban For-
estry Engineering Techn ology Development and Research 

Table 3: Water extraction accuracy assessment for the study region E: errors (C, commission; O, omission).

Number Land surface water information extraction methods Ec Eo

1 NDWI 25.64% 12.45%

2 MSWI                                                     12.87% 6.38%

3 SVM 6.75% 5.31%

4 OOM 6.43% 6.15%



1544 Wenfeng Gong et al.

Vol. 19, No. 4, 2020 • Nature Environment and Pollution Technology  

Center. We We thank International English teacher Steve 
Harding for his assistance in language editing. We also want 
to express our respect and thanks to the anonymous reviewers 
and the editors for their helpful comments in improving the 
quality of this paper. This research was supported by National 
High Technology Research and Development Program 863 
(Grant No.2012AA102001), Natural Science Foundation of 
Hainan University (Grant No. KYQD (ZR) 20058 and 1863), 
and Natural Scientific Foundation of Heilongjiang Province 
(Grant No. D201410).

REFERENCES 
Acharya, T., Subedi, A. and Lee. D. 2018. Evaluation of water indices for 

surface water extraction in a Landsat 8 Scene of Nepal. Sensors, 18: 
2580; doi:10.3390/s18082580.

Alamgir, A., Khan, M.A., Manino, I., Shaukat, S.S. and Shahab, S. 2016. 
Vulnerability to climate change of surface water resources of coastal 
areas of Sindh, Pakistan. Desalin. Water. Treat., 57: 18668-18678.

Alanazi, H.A. and Ghrefat, H.A. 2013. Spectral analysis of multispectral 
Landsat7ETM+ and ASTER data for mapping land cover at Qurayah 
Sabkha, Northern Saudi Arabia. J. Indian. Soc. Remote Sens., 41(4): 
833-844.

Alesheikh, A.A., Ghorbanali, A. and Nouri, N. 2007. Coastline change 
detection using remote sensing. Int. J. Environ. Sci. Technol., 4: 61-66.

Araral, E. and Wu, X. 2016. Comparing water resources management in 
China and India policy design: institutional structure and governance. 
Water Policy, 18: 1-13.

Borton, I.J. 1989. Monitoring floods with AVHRR. Remote Sens. Environ., 
30(1): 89-94.

Chen, W.Q., Ding, J.L., Li, Y.H. and Niu, Z.Y. 2015. Extraction of water 
information based on China-made GF-1 remote sense image. Resources 
Science, 37(6): 1166-1172.

Cristianini, N. and Shawe, T.J. 2000. An Introduction To Support Vector 
Machines and Other Kernel Based Learning Methods. Cambridge 
University Press. http://dx.doi.org/10.1017/CBO9780511801389.

Du, Z.Y. and Zhou, C.H. 1998. Automatically water extraction remote 
sensing information for water bodies. Journal of Remote Sensing, 4: 
264-269.

Feyisa, G.L., Meilby, H., Fensholt, R. and Proud, S. R. 2014. Automated 
water extraction index: a new technique for surface water mapping using 
Landsat imagery. Remote Sens. Environ., 140: 23-35.

Frey, H., Huggel, C., Paul, F. and Haeberli, W. 2010. Automated detec-
tion of glacier lakes based on remote sensing in view of assessing 
associated hazard potentials. Grazer Schriften der Geographie und 
Raumforschung, 45: 261-272.

He, Y.R., Zhang, X.X. and Hua, L.Z. 2016. Object-based distinction between 
building shadow and water in high resolution imagery using fuzzy-rule 
classification and artificial bee colony optimization. J. Sens., https://
doi.org/10.1155/2016/2385039.

He, Z.Y., Zhang, X.C., Huang, Z.C. and Jiang, H.X. 2004. A water extraction 
technique based on high-spatial resolution remote sensing images. J. 
Zhejiang. Univ. (Sci. Edu.), 31(6): 701-707.

Huang, H.B., Zhao, P., Chen, Z.Y. and Guo. W. 2008. Research on the meth-
od of extracting water body information from ASTER Remote Sensing 
image. Remote Sensing Technology and Application, 23(5): 525-528. 

Ji, L., Geng, X., Sun, K., Zhao, Y. and Peng, C. 2015. Target detection 
method for water mapping using Landsat 8 OLI/TIRS imagery. Water, 
7: 794-817.

Ji, L., Zhang, L. and Mylie, B. 2009. Analysis of dynamic thresholds for 
the normalized difference water index. Photogramm. Eng. Rem. S., 
75(11): 1307-1317.

Johansson, A.M. and Brown, I.A. 2013. Adaptive classification of supra-gla-
cial lakes on the West Greenland Ice Sheet. IEEE J. Sel. Top. Appl. 
Earth Obs. Remote Sens., 6: 1998-2007.

Kaplan, G. and Avdan, U. 2017. Object-based water body extraction model 
using Sentinel-2 satellite imagery. Eur. J. Remote Sens., 50(1):143-150.

Khandelwal, A., Karpatne, A., Marlier, M.E., Kim, J., Lettenmaier, D.P. 
and Kumar, V. 2017. An approach for global monitoring of surface 
water extent variations in reservoirs using MODIS data. Remote Sens. 
Environ., http://dx.doi.org/10.1016/j.rse.2017.05.039.

Lee, J.K., Acharya, T.D. and Lee, D.H. 2018. Exploring land cover classifi-
cation accuracy of Landsat 8 image using spectral index layer stacking 
in hilly region of South Korea. Sens. Mater., 30: 1-15.

Li, Y.H., Ding, J.L. and Yan, R.H. 2015. Extraction of small river information 
based on China-made GF-1 remote sense images. Resources Science, 
37(2): 408-416.

Liu, S.T., Wang, M.X., Yang, S.W., Yan, M.Z. and Yang, L.H. 2019. Ex-
traction accuracy and stability analysis of different water body index 
models in GF-2 images. Bulletin of Surveying and Mapping, 8: 135-139.

Lu, S.L., Wu, B.F., Yan, N.N. and Wang, H. 2011. Water body mapping meth-
od with HJ-1A/B satellite imagery. Int. J. App. Earth Obs., 13: 428-434.

Masocha, M., Dube, T., Makore, M., Shekede, M.D. and Funani, J. 2018. 
Surface water bodies mapping in Zimbabwe using Landsat 8 OLI 
multispectral imagery: A comparison of multiple water indices. Physics 
and Chemistry of the Earth, Parts A/B/C, 106: 63-67.

Mcfeeters, S. K. 1996. The use of normalized difference water index (NDWI) 
in the delineation of open water features. Int. J. Remote Sens., 17(7): 
1425-1432.

Melesse, A.M., Weng, Q., Thenkabail, P.S. and Senay, G.B. 2007. Remote 
sensing sensors and applications in environmental resources mapping 
and modelling. Sensors, 7: 3209-3241. 

Nath, R.K. and Deb, S.K. 2010.Water-body area extraction from high 
resolution satellite images-an introduction, review, and comparison. 
Int. J. Image Process., 3: 353-372.

National Research Council, 2008. Integrating Multiscale Observations of 
U.S. Waters. The National Academies Press, Washington, DC, USA. 

Ovakoglou, G., Alexandridis, T.K., Crisman, T.L., Skoulikaris, C. and 
Vergos, G.S. 2016. Use of MODIS satellite images for detailed lake 
morphometry: application to basins with large water level fluctuations. 
Int. J. Appl. Earth Obs., 51: 37-46.

Peng, B.F., Chen, Z.F., Li, J.H., Luo, W.J., Gan, J. and Zeng, R.L. 2018.
Monitoring water quality of Dongting Lake region based on GF-1 
image. Geographical Research. DOI: 10.11821/dlyj201809002

Rishikeshan, C.A. and Ramesh, H. 2018. An automated mathematical 
morphology driven algorithm for water body extraction from remotely 
sensed images. Isprs. J. Photogramm., 146: 11-21.

Sarp, G. and Ozcelik, M. 2016. Water body extraction and change detection 
using time series: A case study of Lake Burdur, Turkey. Journal of 
Taibah University for Science, 11: 381-391.

Sawaya, K.E., Olmanson, L.G., Heinert, N. J., Brezonik, P.L. and Bauer, 
M.E. 2003. Extending satellite remote sensing to local scales: land 
and water resource monitoring using high-resolution imagery. Remote 
Sensing of Environment, 88(1-2): 144-156.

Selmes, N., Murray, T. and James, T.D. 2011. Fast draining lakes on the 
green land ice sheet linked to routing of surface water. Geophys. Res. 
Lett. 38. https://doi.org/10.1029/2011GL047872.

Senay, G.B., Friedrichs, M.K., Singh, R.K. and Velpuri, N.M. 2016. Evaluat-
ing Landsat 8 evapotranspiration for water use mapping in the Colorado 
River Basin. Remote Sens. Environ.,185: 171-185.

Song, Y.B., Jin, Y.T. and Lang, F. 2015. Water extraction based on mul-
tispectral data of GF-1 satellite. Journal of North China Institute of 
Aerospace Engineering, 25(1): 16-19.

Sun, F., Sun, W., Chen, J. and Gong, P. 2012. Comparison and improvement 
of methods for identifying waterbodies in remotely sensed imagery. 
Int. J. Remote Sens., 33: 6854-6875.



1545APPLICABILITY OF SURFACE WATER EXTRACTION BASED ON GF-2 HD SATELLITE

Nature Environment and Pollution Technology • Vol. 19, No. 4, 2020

Sun, Na., Zhu, W.N. and Cheng, Q. 2018. GF-1 and Landsat observed a 
40-year wetland spatiotemporal variation and its coupled environmental 
factors in Yangtze river estuary. Estuar. Coast. Shelf. S., 207: 30-39.

Tatar, N., Saadatseresht, M., Arefi, H. and Hadavand. A. 2018. A robust 
object-based shadow detection method for cloud-free high resolution 
satellite images over urban areas and water bodies. Advances in Space 
Research, 61(11): 2787-2800.

Vorosmarty, C.J., Green, P., Salisbury, J. and Lammers, R.B. 2000. Global 
water resources: Vulnerability from climate change and population 
growth. Science, 289: 284-288.

Wang, Q.Y., Chen, R.X., Xu, J. and Chen, X.L. 2012. Research on methods 
for extracting water body information from HJ-1A/B Data. Science 
Technology and Engineering, 12(13): 3051-3056.

Wang, X.B., Xie, S.P., Zhang, X.L., Chen, C., Guo, H., Du, J.K. and Duan, 
Z. 2018. A robust multi-band water index (MBWI) for automated 
extraction of surface water from Landsat 8 OLI imagery. Int. J. Appl. 
Earth Obs., 68: 73-91.

Wasowski, J., Lamanna, C., Gigante, G. and Casarano, D. 2012. High res-
olution satellite imagery analysis for inferring surface–subsurface wa-
ter relationships in unstable slopes. Remote Sensing of Environment, 
124: 135-148.

Xiong, L.H., Deng, R., Li, J., Liu, X.L., Qin, Y., Liang, Y.H. and Liu, Y.F. 
2018. Subpixel surface water extraction (SSWE) using Landsat 8 OLI 
Data. Water, 10. doi:10.3390/w100506531.

Yang, K., Li, M.C., Liu, Y.X., Cheng, L., Huang, Q.H. and Chen, Y.M. 2015a. 
River detection in remotely sensed imagery using Gabor filtering and 
path opening. Remote Sens., 7: 8779-8802.

Yan, G., Mas, J., Maathuis, B.H.P., Zhang, X.M. and Van, D.P. 2006.

Comparison of pixel-based and object oriented image classification 
approaches-a case study in a coal fire area, Wuda, Inner Mongolia, 
China. Int. J. Remote Sens., 27(18): 4039-4055.

Yang, S.W., Xue, C.S. and Liu, T. 2010. A method of small water information 
automatic extraction from TM remote sensing images. Acta Geodaetica 
et Cartographica Sinica, 39(6): 611-617 (in Chinese).

Yang, Y.H., Liu, Y.X., Zhou, M.X., Zhang, S.Y., Zhan, W.F., Sun, C. and 
Duan, Y.W. 2015b.Landsat 8 OLI image based terrestrial water extrac-
tion from heterogeneous back-grounds using a reflectance homogeni-
zation approach. Remote Sens. Environ., 171: 14-32.

Yao, F.F., Wang, C., Dong, D., Luo, J.C., Shen, Z.F. and Yang, K.H. 2015. 
High-resolution mapping of urban surface water using ZY-3 multi-spec-
tral imagery. Remote Sens., doi: 10.3390/rs70912336.

Yue, Y., Gong, J. and Wang, D. 2010. The extraction of water information 
based on SPOT5 image using object-oriented method. In: 2010 18th 
International Conference on Geoinformatics, pp. 1-5, IEEE.

Zhang, F., Tiyip, T., Kung, H., Johnson, V. C., Wang, J. and Nurmemet, I. 
2016. Improved water extraction using Landsat TM/ETM images in 
Ebinur Lake, Xinjiang, China. Remote Sensing Applications: Society 
and Environment, 4: 109-118.

Zhang, H., Jiang, Q.G. and Xu, J. 2013. Coastline extraction using support 
vector machine from remote sensing image. Journal of Multimedia, 
DOI: 10.4304/jmm.8.2.175-182.

Zhou, C.H., Du, Y.Y. and Luo, J.C.1996. A description model based on 
knowledge for automatically recognizing water from NOAA/AVHRR. 
Journal of Natural Disaster, 5(3): 100-108.

Zou, C., Yang, X.Z., Dong, Z.Y. and Wang. D. 2019. A fast water informa-
tion extraction method based on GF-2 remote sensing image. Journal 
of Graphics, 40(1): 99-104.


