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ABSTRACT

Vegetation can enhance the stability of slopes by increasing the shear resistance of the soil. Shear 
stress applied to the soil matrix is resisted by the pullout strength of the roots via the friction at contact 
points between the soil and the roots. The effectiveness of root reinforcement depends on interface 
friction between soil and roots. In this study, tests were carried out on Indigofera amblyantha Craib roots, 
by measuring resistance as they are pulled out of the soil where the soil has varying dry densities. The 
results reveal three phases in the relationship between the pullout force and the slippage of the roots, 
i.e. (1) steep rise, (2) steep fall, and (3) gradual decline. In the first phase, the pullout force is increasing 
sharply and linearly up to a maximum when the slippage is about 10mm. With continued slippage, the 
required pullout force decreases significantly and nonlinearly in up and down fluctuations. Eventually, 
the pullout force reaches zero. For soil with a given dry density, the maximum pullout force increases 
linearly with increasing root diameter, and the correlation coefficient is greater than 0.9. Further, for a 
root with a given diameter, the maximum pullout force increases with increasing soil dry density. When 
the root breaks on pulling, it is called tensile failure; when the root is fully pulled out, it is called friction 
failure. The mode of failure for all roots is friction failure, for soil with dry densities of 1.35 g/cm3, 1.45 g/
cm3, and 1.55 g/cm3. For soil with a dry density of 1.65 g/cm3, and root diameter under 0.716 mm, the 
observed failure mode is generally tensile; for diameters over 0.716 mm, the failure mode changes to 
friction; that is, thin roots break, thick roots get pulled out.

INTRODUCTION

Over the past several decades, the rapidly expanding 
economy has led to a continuous increase in construction 
projects; this has caused large-scale disturbances in slopes, 
which require ecological restoration. Vegetation restoration 
techniques are widely accepted, effective, affordable, and en-
vironment-friendly to prevent soil erosion. Vegetation plays 
an important role in the slope stability by root reinforcement 
(Gray & Sotir 1996, Simon et al. 2000, Li & Eddleman 2002, 
Fan & Su 2008, Mickovski et al. 2009, Dazio et al. 2018)). 
Root systems in the soil change the mechanical properties 
of the soil consolidation (Mickovski et al. 2010, Yang et al. 
2016). Plant roots can hold soil in the steep slopes depending 
on the advantage of extensive root proliferation and mechan-
ical properties (Schwarz et al. 2010). Additionally, photo-
synthesis of plants can decrease soil moisture by root, and 
the matrix suction and mechanical strength were increased 
(Schwarz et al. 2010). As shown in Equation 1, these differ-

ent mechanical effects were concentrated on a significant 
increase in soil cohesion as defined by the Mohr-Coulomb 
analysis (Genet et al. 2008).

	 tcr = cr + cs + s tan(f) …(1)

tcr shear stress of the soil;

cr: additional cohesion (in roots);

cs : bare soil cohesion;

s: effective normal stress (in the shear plane);

f: bare soil friction angle.

The effect of root enhancement on the stability of a slope 
can be directly assessed by the additional shear strength 
provided by roots in the root-enhanced soil (Gray & Sotir 
1996). Gray & Ohashi’s (1983) laboratory experiments 
provide a useful interpretation of soil reinforcement by 
roots (Abernethy & Rutherfurd 2001). Root-soil is a fibre 
inclusion (Gray & Barker 2004), and it can be considered as 
a composite material (Gray & Ohashi, 1983, Abe & Ziemer 
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1991). Root fibre improves soil shear strength by transferring 
the shear stress in the soil matrix into the pullout strength 
of fibre inclusions through friction along with the points of 
contact between the fibre and the soil (Gray & Barker 2004, 
Cazzuffi et al. 2014a). 

A large number of studies showed that the shear strength 
increase compared with no root-soil can result from many 
mechanisms, including pullout or breakage of individual 
roots (Wu et al. 1979) or composite action (Wu et al. 1988a) 
rely on root morphology and soil condition (e.g., soil density) 
(Mickovski et al. 2010, Comino & Marengo 2010). Soil root 
shear strength, the mechanical reinforcement effect of plant 
roots on slope stability, has been studied (Wu & Watson 
1998). The pullout strength of roots can be measured by in 
situ root tests (Wu et al. 1979, Wu & Watson 1998, Comino 
& Marengo 2010) and laboratory root tensile tests (Abe & 
Ziemer 1991, Docker & Hubble 2008, Bischetti et al. 2009, 
Gray & Barker 2004, Liu et al. 2014). Wu et al. (1988b), Wu 
& Watson (1998) conducted an in situ shear test between 
the root-soil system and bare soil. The results show that the 
shear strength of the root-soil composite is higher than that 
of the bare soil, and the plant roots significantly enhance 
the cohesion of the soil; further, the stability of the slope is 
enhanced. The most critical parameters of root systems as soil 
reinforcement are root density, depth, and pullout strength. 
These papers provide a substantial introduction to the role 
of the root system in soil shear strength. 

Previous studies involving root tensile tests have conclud-
ed that root destruction generally consists of the following 
processes: (1) root fibres slip, (2) root fibres stretch, and (3) 
root fibres break (Abe & Ziemer 1991, Gray & Barker 2004, 
Comino & Marengo 2010). Plant root response depends 
on plant species and plant growing conditions (Comino & 
Marengo 2010). 

Waldron (1977) and Wu et al. (1979) assumed that the 
shear force generated in the soil when the soil layer (slope) 
moves was converted to the pullout force in the roots. More-
over, the shear stress can be decomposed into tangential 
and normal components, and that the soil friction was not 
affected, the additional cohesion coefficient ranges from 
1.0 to 1.3 (Bischetti et al. 2009). Many researchers believe 
that the additional cohesion coefficient is a universal value 
of 1.2 (Waldron 1977, Wu et al. 1979, Wang et al. 2019). 
In particular, the mechanical characteristics (mean values 
of root pullout force and root diameter) of plant roots are 
very important. 

From Fig. 1, the slope perspective of geotechnical en-
gineering, the mechanical effect of the roots involves two 
significant actions: (i) Friction; the roots are resistant to 
axial tension and compression. When the roots touch and rub 
against the soil such that they serve as individual anchors, 
thereby preventing a pullout failure. (ii) Bearing, the roots 
are resistant to shear forces and bending moments. When 
the root-soil composite is subjected to external loading, the 
horizontal shearing force on the soil matrix is transferred 
into the pullout strength in the root fibre, enhancing the 
shear strength of the composite (Waldron 1977, Waldron 
& Dakessian 1981, Wästerlund 1989, Ennos 1989, Abe & 
Ziemer 1991, Cazzuffi et al. 2014b, Liang 2015). Therefore, 
plant roots need to strengthen the soil.

Pullout tests are a standard method to determine root 
pullout force in the laboratory (Shewbridge & Sitar 1996, 
Mickovski et al. 2005, Devkota et al. 2006, Stokes et al. 
2007, Tosi 2007, Burylo et al. 2009).

In the process of ecological restoration, pioneer plant 
species are most relevant for a local application of these re-
source-saving, environment-friendly techniques. Indigofera 
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amblyantha Craib (Fabaceae) is a shrub that is suitable for 
slope protection, especially because they have rapid growth, 
well-developed roots, drought resistance, disease resistance, 
and adaptability to bare soil (Chen et al. 2013, Zhao et al. 
2018, Zhang et al. 2018). We selected the root of Indigofera 
amblyopia Craib as a research subject, investigating the root 
pullout force and its influential factors by pulling out test. 
Further, we developed a theoretical basis and foundation for 
root-soil interface friction.

MATERIALS AND METHODS

Study Area

A point at Yichang city in the Three Gorges Reservoir area 
in China was selected for collection of samples. As shown in 
Fig. 2, in this study area, the altitude is between 30-2057m; 
and more than 67.4% of the area is a low mountainous 
terrain; the climate is humid subtropical monsoon; the 
annual precipitation is 1100-1200mm; the annual average 
temperature is 16.9 °C; the average relative humidity is 70-
80%; and the annual frost-free period is 340 days. Rainfall 
is unevenly distributed throughout the season, with the 
most rainfall in the period between May and September 
(Tang et al. 2014).

The purple soil developed from the Triassic to Tertiary is 
the dominant soil type in this study area, accounting for more 
than 70% of the area (He et al. 2009). It is characterized by 
low permeability, high hydrophobicity, and natural weather-
ing (Zhang et al. 2016). It has been classified as a Regosols 
in FAO Taxonomy and Entisols in USDA Taxonomy (Tang 
et al. 2014). This purple sloping farmland is a vital cultivated 

land resource in the Three Gorges Reservoir area. It is also 
the primary source of soil erosion and sedimentation into 
the Three Gorges Reservoir; it is estimated that the annual 
soil erosion of the sloping farmland is 3,464-9,452 tons per 
square kilometre (Wei et al. 2018).

In restoration programs, the plant Indigofera amblyopia 
Craib has been used for slope vegetation protection. It is 
a deciduous perennial shrub of the genus Magnolia in the 
Leguminosae family and commonly grows at the edges of 
the forests, roadsides, barren slopes, and on the hillside be-
low 1,200 m. It can hold the soil, improve soil permeability, 
effectively intercept precipitation, and has a good drought, 
cold resistance, and strong roots. As desirable vegetation for 
soil and water conservation and slope protection, Indigofera 
amblyopia Craib can prevent soil erosion, and it can be 
planted on both sides of a highway or railway slope along 
with grasses. 

Sample Preparation

The purple soil with the experiment is widely distributed 
in the Three Gorges Reservoir area. The sampling site is 
located at Longkou Village (31°13’37’’N, 110°41’16”E with 
a mean altitude of 110 m), Shuitianba Town, Zigui County, 
Yichang City in the Hubei Province in China. The samples 
are 0-20 cm, acquired from the surface soil in the middle 
of the slope, and they were collected in late June 2014. The 
soil samples were placed indoor and air-dried. Crumbled 
big clods, decomposed plant roots, residues of dead insects, 
stones, and other debris were removed. The air-dried soil 
samples were then sifted through 2 mm standard sieve to be 
used as standardized soil samples. The sieving method was 
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used to measure the particle size distribution of the final soil 
samples. The stoving and cutting ring methods measured the 
natural water content and dry density of the final soil sam-
ples. Further, the pH of the final soil samples was measured 
using a potentiometer. The basic physical properties of the 
final purple soil sample are as follows: solid density, 1.33 g/
cm3; natural moisture content, 17.76 %; pH, 6.1; more than 
2 mm, 28.49 %; 2-0.5 mm, 26.46 %; 0.5-0.25, 21.75%; 
0.25-0.075, 11.89 %; 0.075-0.002, 6.54 %; less than 0.002, 
4.87 %. As given in Tables 1 and 2, the range of shear stress 
is 47.65-85.23 kPa, the purple soil is clay, and liquid index, 
liquid limit, plastic limit, plasticity limit index are as follows: 
0.28-0.74, 13.37-15.75%, 9.77-11.67%, and 3.15-4.33%, 
respectively (Hua et al. 2008).

In July 2014, we collected 38 well-grown and typical 
Indigofera amblyopia Craib as full plant samples. After 
collecting the samples, the soil off the plant was cleaned 
in still water and the plants were let to dry. We then used 
WinRHIZO to analyse the root diameters statistically. In 
some studies (Hales et al. 2009, Montagnoli et al. 2012), 
the root diameter is divided into four categories: very fine 
(< 0.5 mm), fine (0.5-1 mm), medium (1-2 mm), coarse ( >2 
mm). Extremely fine roots (0-0.5 mm) have been recognized 
in some studies; however, they have been questioned due 
to their rapid turnover (Adhikari et al. 2013). After using 
WinRHIZO to determine the average diameter of the sam-
ples with single roots, all roots were put into sealed bags 
and stored in a refrigerator. Hence, the pullout test was only 
performed on the roots with diameters between 0.5-1.0 mm. 
The root length is 100 mm, and the pullout tests of roots are 
completed within 24 h.

Pullout Test

Table 1 summarizes the basic parameters of the soil; the 
natural moisture content of the soil is 17.76%. We used 
a methodology of restoring the dry soil uniformly to that 
condition. The water content of the air-dried and screened 
soil, w0, was determined. Since the natural water content is 
17.76%, the design target moisture content of the soil sam-
ples, wi, for the pullout test was set at 17.76%, and then the 
soil quantity was calculated. Using equations (2) and (3), the 
target is calculated under the condition of moisture content 
wi, wherein water is added to the soil samples considering 
moisture content wwi and soil quality, as follows:

                 m
m
w

w wwi i=
+

¥ -( )
1 0 01

0 01

0

0
.

.                  …(2)

                     m w Vi i d= +( )1 0 01. r  …(3)

Where, m: Soil mass

g: Mass unit
mwi (g): Soil quality of the target water when preparing 

the soil samples

m(g): Soil quality of the air-dried soil when preparing 
the soil samples 

mi(g): Soil quality required for sample preparation   

wi(%): Target water content of the soil samples  

w0 (%): Water content of the air-dried soil   

rd(%) (g/cm3): Dry density of the soil 

V (cm3): Volume of the soil

Table 1: Basic physical properties of the soils used in the study.

Soil Index Clay (< 0.002 mm) % Organic matter content % Natural moisture content %

Purple Soil

Maximum 15.31 1.48 13.76

Minimum 11.08 1.16 11.08

Average value 13.18 1.31 12.48

Sample size 30.00 30.00 30.00

Table 2: Strength properties of the soils used in the study. 

Soil Index Liquid index Shear strength kPa Liquid limit % Plastic limit % plasticity index %

Purple Soil

Maximum 0.74 85.23 15.75 11.67 4.33

Minimum 0.28 47.65 13.37 9.77 3.15

Average value 0.50 61.91 14.42 10.55 3.86

Sample size 30.00 30.00 30.00 30 30.00
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The soil sample was prepared as follows: (1) Mass m was 
measured for the air-dried soil sample, and mass mwi was 
measured by adding water into a measuring cylinder. Then, 
water with mass mwi was sprayed evenly on the soil sample 
with mass m. Next, the soil sample and water were mixed 
well, and the wetted soil sample was placed in a container. 
The soil sample was then left in the container until it reached 
the target moisture level at which point it was sealed with a 
tight cover. The sample was remoulded, and the initial dry 
density was controlled at rd =1.35g/cm3. We used equation 
(2) to calculate the soil mass mi and prepared the sample 
of volume V to reach the target moisture content wi. Then, 
as preparation for the soil sample to reach the target soil 
moisture, the soil sample was weighed; the mass of the soil 
was mi. The container size of the test was 100×100×20mm. 
Before the test, the relationship between hitting times and the 
dry density was determined by the compaction method, and 
that increasing the hitting times was required for each 0.1g/
cm3 at the same height. When the test is conducted, the dry 
target density of the test is controlled by hitting times. By 
the soil mechanics test specification, the sample of pullout 
test is reconstituted by geotechnical test manual. A 100mm 
long single root of the Indigofera amblyatha Craib was 
embedded horizontally in the centre of a 100mm × 100mm 
× 200mm box packed with soil. The root-soil composite 
material is composed of an Indigofera amblyatha Craib 
single root and the soil.

A modified HANDPI’s HP-50 digital tester of pullout 
force was then used to perform the pullout test on the single 
root-soil composite. The root protruding from the soil surface 
was clamped and pulled out of the soil at a constant rate of 
10mm/min. During the test, the pullout force and the slippage 

were continually recorded. The device, HANDPI’s HP-50, 
can record 60 data points per second. If the root in the soil 
with the initial dry density did not break, the dry density 
of the soil was increased by 0.1g/cm3 until the single root 
pulled out or tensile failure occurred. In the test, the average 
diameter of the root was chosen between 0.50 and 1.00mm. 
Tests in which the position of the breakage is near the clamp 
were regarded as failures. The failure means that the root 
system is damaged by the clamp or because the root surface 
is damaged, it is pulled off by the action of the external force, 
and the value is not the actual test result. Because Zhang et 
al. (2014) said that when root breaking was caused by stress 
concentration near the clamp rather than by the pullout 
force, it is not like a natural break in the soil. The clamp is a 
fastening device made of a pair of steel blocks according to 
the diameter of the root. A circle of kraft paper was wrapped 
around the root system to improve the friction of the clamp 
and minimize breakage, caused by stress concentration near 
the clamp. In the test, one end of the root is in the soil, and 
the other end is in the clamp. Fig. 3 shows a schematic of 
the pullout test of a single root.

RESULTS

Pullout Tests

The pullout tests were performed on 38 root samples of 
Indigofera amblyatha Craib. Even if the root part is covered 
with kraft paper, it is easy to pinch the root, which causes the 
test to fail, and therefore, several trials had to be neglected. 
The roots of the pull test were pulled out of 38 roots, but only 
14 of the 38 roots were properly pulled out or resulted in 
tensile failure. Table 3 lists the measured maximum pullout 
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force, and maximum pullout strength with the corresponding 
root diameters.

From Table 3, there are 25 root systems in the table, and 
the results of two times are completed. The first pullout test 
has been performed on 38 root samples of Indigofera ambly-
atha Craib, and 14 roots have been pulled out by the device. 
In the second test, 22 roots pullout tests were completed, and 
11 roots pulls were successful. From the two experiments, 
25 roots were pulled successfully or experienced tensile 
failure it can be seen that for roots with an average diameter 
between 0.50-1.00 mm, the maximum pullout force varies 
between 4.39N and 13.51N. Further, the maximum pullout 
force increases with increasing average root diameter, as 
shown in Fig. 4; this relationship can be described by the 
power regression curve, which is also shown in Fig. 4. 

Table 4 indicates that for the 14 Indigofera amblyatha 
Craib pulled out roots with the average diameter between 

0.50-1.00 mm, the maximum pullout strength varies between 
12.81 and 25.38 MPa. Further, the maximum pullout strength 
decreases with increasing average root diameter, as shown 
in Fig. 4. This relationship can be described by the power 
regression curve, also shown in Fig. 4. 

Relationship Between Pullout Force and Slippage of 
Roots

Fig. 5 shows the measured pullout force and slippage of 
single roots of Indigofera Amblyantha Craib with diameters 
between 0.50-1.00 mm in the pullout tests for soils with four 
dry densities. Fig. 5(a) shows the pullout force and the slip-
page of the single root for the initial soil dry density Drd = 
1.35g / cm3. The results show that the failure mode is friction, 
and there is no tensile failure. The dry density of the soil was 
then increased by Drd = 0.1g / cm3 until the dry soil density 
reached Drd = 1.65g / cm3. The roots with diameters of 0.59 

Table 3: Measured maximum pullout force, maximum pullout strength with corresponding root diameters from pullout tests.

N D1 (mm) D2  (mm) D3  (mm) Average diameter D (mm) Maximum pullout force (N) Maximum pullout strength (MPa)

1 0.73 0.52 0.32 0.52 4.40 20.46

2 0.63 0.56 0.43 0.54 4.97 21.70

3 0.42 0.46 0.84 0.57 5.00 19.37

4 0.76 0.48 0.46 0.57 6.40 25.38

5 0.56 0.59 0.61 0.59 5.82 21.51

6 0.66 0.51 0.61 0.59 5.91 21.47

7 0.76 0.50 0.56 0.61 6.47 22.28

8 0.78 0.68 0.43 0.63 5.80 18.61

9 0.84 0.70 0.35 0.63 6.70 21.49

10 0.92 0.62 0.42 0.65 6.90 20.58

11 0.61 0.71 0.65 0.66 7.20 21.26

12 0.48 0.72 0.82 0.67 6.75 19.03

13 0.59 0.61 1.16 0.79 8.46 17.48

14 0.83 0.70 0.81 0.78 8.06 16.87

15 0.88 0.79 0.72 0.80 7.30 14.64

16 0.93 0.76 0.83 0.84 7.82 14.14

17 1.07 0.84 0.61 0.84 8.90 16.06

18 0.75 0.82 0.96 0.84 8.13 14.53

19 0.84 0.89 0.97 0.90 10.59 16.68

20 0.86 0.91 0.94 0.90 11.11 17.34

21 1.01 0.92 0.83 0.92 10.50 15.80

22 0.89 0.92 0.99 0.93 8.87 13.00

23 0.89 0.92 1.03 0.95 9.04 12.81

24 1.10 0.93 0.87 0.97 11.41 15.55

25 1.20 0.91 0.88 1.00 13.51 17.32
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mm and 0.63 mm must be broken, and the larger diameter 
roots (0.79 mm, 0.90 m, and 0.93 mm) may be completely 
pulled out or exhibit tensile failure, as shown in Figs. 5(b), 
5(c) and 5(d), respectively.

As shown in Fig. 5(d), the change in the single root pull-
out force with increasing slippage can be divided into three 
phases, i.e. from A to B, which is the steep rise; from B to C, 
which is the steep fall; and from C to D, which is the gradual 
decline. With increasing slippage, the pullout force of the sin-
gle root is linear upwards and reaches a maximum in the first 
phase. The pullout force is at its maximum when the slippage 
is about 10 mm. After reaching the maximum, the pullout 
force declines rapidly and nonlinearly in the second phase. 
The pullout force then fluctuates up and down and reaches 
zero eventually in the third phase. At the beginning of the 
test when the root is pulled, the slippage is almost zero due to 
the elastic modulus of the root in the soil. It is assumed that 
the root-soil complex is a homogeneous specimen. When the 
root system is pulled or broken by an external force (pullout 
force), the volume of the specimen is changed (Fig. 1). The 
root-soil contact surface of the soil particles with the pullout 
force enhances dislocation and rotation of the root, which is 
accompanied by the change in the soil volume. This process 
needs to use an external force to complete, and thus, pullout 
force rapidly reaches a maximum in the early stage of the 
test. Then, the pullout process continues, the movement and 
rearrangement of the soil particles around the roots make the 
root-soil interface smoother. The friction between the root 
and the soil particles decreases gradually and then reaches 
a constant. The drawing force also decreases and eventually 
reaches zero. These findings are consistent with those in the 
earlier study (Liu et al. 2012).

From Fig. 5(d), although the single root failure curve of 
tensile failure mode is similar to that of friction failure, there 
is a difference. The following two points can be seen from 
Fig. 5(d). (1) When tensile failure occurs, the pullout force 
reaches the maximum value; thereafter, the pullout force of 
the tensile failure decreases sharply and linearly. (2) When 
the pullout force is close to zero, the corresponding pulling 
resistance slippage decreases. 

De Baets et al. (2008) reported that when the pullout 
test occurs the root fibre deforms. As shown in Fig. 1, the 
root fibre is stretched as long as there is enough interfacial 
friction, confining stress, and anchoring length to lock the 
fibres and prevent slippage or pullout. As the pullout force 
increases, the root system will have a tensile failure or be 
pulled out. The root reinforcement model assumes that 
the pullout strength of the roots is fully mobilized during 
failure. 

The following two differences cause the tensile failure 
and the friction damage of the roots: 

(1) Roots intersect with soil to improve the bond force 
between the roots and soil matrix. When tensile failure 
occurs, the bond force decreases as well as pullout force. 
(2) When the root system is broken, which is equivalent to 
the reduction of the effective length of the root system, the 
force of the root system being pulled out is small, and the 
root pullout time is shorter.

In the other case, when the root is pulled, the length of the 
root in contact with the soil decreases. Therefore, the length 
of the non-extracted root becomes shorter, and the pulling 
resistance slippage is reduced. Therefore, the slippage de-
creases more rapidly when the pullout force is close to zero. 
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Relationship Between Pullout Force and Slippage of Roots 

Fig. 5 shows the measured pullout force and slippage of single roots of Indigofera 

Amblyantha Craib with diameters between 0.50-1.00 mm in the pullout tests for soils 

with four dry densities. Fig. 5(a) shows the pullout force and the slippage of the single 

root for the initial soil dry density 31.35 /d g cm  . The results show that the failure 

mode is friction, and there is no tensile failure. The dry density of the soil was then 

increased by 30.1 /d g cm  until the dry soil density reached 31.65 /d g cm  . 
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Maximum Pullout Force 

Fig. 4 shows the maximum pullout force of the root of 
Indigofera Amblyantha Craib with an average root diam-
eter between 0.50-1.00 mm. The maximum pullout force 
increases significantly with the increasing average diameter 
of the root. The relationship between the maximum pullout 
force of the root of Indigofera amblyantha Craib and the 
average root diameter is power growth. Fig. 4 shows the 
fitted equation to the data.

Effect of Dry Soil Density on the Maximum Pullout 
Force

Table. 4 shows the relationships between the maximum 

pullout force and the average root diameter for four dry soil 
densities. Equations have been fitted to the data, and the 
smallest correlation coefficient is more significant than 0.9 
from Table 4, it can be seen that for each dry soil density, 
the maximum pullout force of the single root increases with 
increasing average root diameter. This shows that the larger 
the root diameter, the larger the contact area between the 
root and the soil, resulting in more friction at the root-soil 
interface. Hence, the pullout force of the single root is also 
larger. For a given root diameter, the maximum pullout force 
of the single Indigofera Amblyantha Craib root increases 
with the increase of dry soil density. This result is consistent 
with that obtained from the earlier study (Song et al. 2006). 
For soil with lower dry density, the soil particles are looser. 
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Fig. 5: Relationships between pullout force and slippage for four dry soil densities. 
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Hence, there is less contact between the soil particles and 
the root surface, resulting in a smaller friction force between 
the root and the soil. For soil with higher dry density, there is 
more contact between the soil particles and the root surface, 
resulting in more friction at the root-soil interface. Hence, 
the pullout force of the root is larger. 

In Fig. 6, the relationships between the maximum pull-
out force and maximum pullout strength with average root 
diameter for rd = 1.65 g/cm3 are fitted with power equations, 
with R2 = 0.854 and 0.959, respectively. 

When the dry soil density is Drd = 1.65g/cm3, the Indi-
gofera amblyantha Craib root undergoes a pullout failure. 
From Fig. 6, the maximum pullout force increases with 
increasing average root diameter. Further, at the average 
root diameter of r = 0.716 mm, the maximum pullout force 
equals the maximum pullout strength. This is an indication 
that r = 0.716 mm is a critical diameter of the single root of 
Indigofera Amblyantha Craib in which the pulling resist-
ance failure mode changes from friction to tensile failure. 
Therefore, for D < 0.716 mm, the pullout failure mode 
is expressed as breaking mode, and for D > 0.716 mm, 

the pullout failure mode of the single root is expressed as 
friction damage. Hence, the pulling resistance of a plant is 
greatly dependent on the friction at the root-soil interface 
(Abe & Ziemer 1991, Anderson & Richards 1987, Leung 
et al. 2018).

DISCUSSION  

Based on measured data from the pullout tests, Fig. 5 shows 
for the average root diameter between 0.5-1.0 mm and the 
pullout force increases with increasing average root diame-
ters. After the load peaks, the pullout force decreases as the 
friction between root and soil lessens owing to the slippage 
of the roots and because of the decreasing interface area 
between the root and soil when the root is extracted from 
the soil. As can be seen from Fig. 5 (d), the pullout force is 
0 when the slippage is about 40 mm, and this means that the 
contact area between the root system and the soil becomes 
smaller. These results are similar to those in the study of the 
extraction of sunflower taproot seedlings by Ennos (1989). 
After the load peaks, it fluctuates significantly, and there are 
further slippages.

Table. 4: Relationships between maximum pullout force and average root diameter for four dry soil densities.

Dry soil densities Fitting equation R2

rd  =  1.35g/cm
3 F = 3.572 D0.731 0.932

rd  =  1.45g/cm
3 F = 6.952 D1.752 0.958

rd  =  1.55g/cm
3 F = 8.909D1.732 0.940

rd  =  1.65g/cm
3 F = 9.142 D0.662 0.957
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Fig. 5(a) shows that for a smaller root diameter, the 
pullout strength is greater. Further, the pullout strength first 
increases sharply and reaches a maximum when the slippage 
is about 10mm. As the test continues, the pullout strength 
decreases gradually with increasing slippage. The pullout 
strength eventually reaches zero.

The results of this study show a positive power function 
correlation between the root diameter and the stress, which 
is consistent with the results of earlier studies (Stokes et al. 
2008, ChunJuan et al. 2011, Zhang et al. 2012, Zhang et al. 
2014). The effect of the root diameter on the tensile properties 
of the root can be explained from the perspective of chemical 
composition, as follows:

The percentage of cellulose increases with a decreasing 
percentage of lignin. Therefore, for a larger root diameter, the 
lignin-cellulose ratio is smaller. As the lignin-cellulose ratio 
is positively correlated with the pullout strength, the pullout 
strength decreases with increasing root diameter (Genet et 
al. 2005, Hales et al. 2009, Lü & Chen 2013, Zhang et al. 
2014). Using a power function, earlier studies have confirmed 
the negative correlation between the root diameter and the 
pullout strength (Nilaweera & Nutalaya 1999, Bischetti et al. 
2005, Genet et al. 2007, ChunJuan et al. 2011). In this study, 
the results also show that the root pulls out strength decreases 
with increasing root diameter. However, the effect of the root 
diameter on the pullout strength is not always significant. 
This can be explained by the autocorrelation between the 
pullout strength and the diameter, i.e.

 
s

p
=
F
S

F
D

= 4

2
 …(4)

Where s is the pullout strength of the root, F is the pullout 
force of the root, S is a cross-sectional area of the root, and D 
is the diameter of the root. Equation 3 shows that the pullout 
strength of the root system is opposite to the root diameter 
(D). It can be seen from Equation 3 that the root diameter (D) 
is the denominator, which is opposite to the pullout force (F).

CONCLUSIONS 

The study was conducted under conditions of the natural 
water content of soil = 17.76%, soil depth = 50 mm, and 
embedding root length = 100 mm. The pullout tests were 
carried out on single roots of Indigofera amblyantha Craib 
by the axial load method. The pullout force of Indigofera 
amblyantha Craib was investigated. The test results showed 
that:

 (1) The relationship between the pullout force and the 
slippage of Indigofera amblyantha Craib roots can be 

summarized in three phases: (1) steep rise, (2) steep 
fall, and (3) gradual decline. During the first phase, 
the pullout force increases sharply and linearly up to a 
maximum when the slippage is about 10 mm. With the 
increase in slippage, the pullout force decreases signif-
icantly and nonlinearly, with up and down fluctuations. 
Eventually, the pullout force reaches zero.

 (2) For soil with a given dry density, the maximum pullout 
force increases linearly with increasing root diameter, 
and the coefficient of correlation is greater than 0.9. 
This is an indication that the larger the root diameter, the 
longer is the embedded root length in the soil, and the 
greater is the friction at the root-soil interface. Hence, 
the force required to pull out the root is greater.

 (3) For a root with a given diameter, the maximum pullout 
force increases with increasing soil dry density. The 
mode of pulling resistance failure of all roots is friction 
failure for soil with dry densities of 1.35 g/cm3, 1.45 g/
cm3, and 1.55 g/cm3. For soil with a dry density of 1.65 
g/cm3, the failure mode changes from friction to tensile 
failure when the root diameter is 0.716 mm (i.e., the 
pullout failure mode is a tensile failure when the root 
diameter is smaller than 0.716 mm; it is friction failure 
when the root diameter is larger than 0.716 mm).
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