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ABSTRACT

The study considered the level, sources and extent of trace and rare earth elements (REE) 
contamination in Agbangudu stream sediments in Ekiti State, Southwestern Nigeria. The samples 
were analysed with Laser Ablation Inductively Coupled Plasma Spectrometer (LA-ICP-MS). The 
trace and rare earth elements’ concentration ranged from 0.50 (Mo) to 750 (Ba) and 0.16 (Lu) to 175 
(Ce) ppm respectively. The results revealed that the sediments are not that enriched in REEs. The 
Pollution Load Index (PLI) indicates baseline levels of the metals. The geochemical index (Igeo) of the 
elements revealed uncontaminated to moderately contaminated, except for Cs and Ta with strongly 
to extremely contaminated status. The Average Shale Value (AVS) and the Upper Continental Crust 
(UCC) normalized REE distribution patterns of the sediments. To establish the relationship between the 
metals, Principal Component Analysis (PCA) and Clusters Analysis (CA) were used as classification 
techniques. Despite the common occurrences of the elements, their overall patterns were much 
different as revealed by the cluster analysis.   

INTRODUCTION

Sediments are transported and deposited particles or ag-
gregates derived from rocks, soils or biological material 
(SSSA 2008). Generally, stream sediments are composed 
of weathering products of basement rocks introduced into 
streams.  Studies of the chemistry of stream sediments have 
been used in mineral prospecting (Levinson 1974, Rose et 
al. 1979, Hale & Plant 1994) and environmental studies 
(Förstner 1983, Howarth & Thornton 1983, Förstner et al. 
1991). Most streams in southwestern Nigeria are located on 
the Basement complex, which lies within the reactivated part 
of the Pan-African mobile belt between the West African and 
Congo Cratons (Kennedy 1965). The geochemical compo-
sitions of stream sediments reflect the average composition 
of an entire drainage basin (Halamic et al. 2001, Reimann & 
Melezhik 2001). According to Grunsky & Sutphin (2009), 
geochemical studies based on the chemical analysis of 
active stream sediments are an effective tool with several 
applications. The expression “rare earth elements” (REEs) 
does not infer that they are rare in nature; rather, REEs are 
relatively abundant in the earth. The total contents of REEs 
exceed 200 ppm in the average crust. Some REEs are even 
more common than copper or lead in the crust (Castor & 
James 2006, Chen 2011). REEs are at the lower part of 
the Periodic Table, which includes 15 lanthanides (from 

lanthanum to lutetium) and two other elements: scandium 
and yttrium. These 17 elements form a coherent group with 
similar chemical properties. Usually, REEs can be divided 
into three groups by their atomic number and masses - the 
light rare earth elements (LREE), which comprises of La, 
Ce, and Pr, the middle rare earth elements (MREE), made up 
of Nd, Sm, Eu, and Gd, while the heavy rare earth elements 
(HREE) include those from Tb to Lu (EPA 2012). 

Trace and rare earth elements in sediments are derived 
from both natural (geogenic) and anthropogenic sources. 
Heavy metals and rare earth elements (REEs) are potential-
ly toxic substances in ecosystems. According to Lin et al. 
(2008), heavy metals and REEs are added to the hydrolog-
ical system by natural processes such as rock weathering, 
volcanic eruption and long-distance atmospheric deposits. In 
recent times, the chief sources of these elements are due to 
the human activities: industrialization, agriculture, urban de-
velopment and waste discharge (Senesi et al. 1999, Ochieng 
et al. 2007, Chen et al. 2013, Ong et al. 2013, Sofianska & 
Michailidis 2013, Zhuang et al. 2013). Stream sediments 
contamination by heavy metals has become a widespread 
serious problem in many parts of the world (Sofianska & 
Michailidis 2013). Trace and rare earth element contamina-
tion in soils has attracted so much attention because of the 
hazard it poses to human health (Loska et al. 2004). Rivers, 
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streams and sediments are contaminated by trace elements 
such as: As, Fe, Hg, Mn and Pb from artisanal mining activi-
ties, and their values have also been found to exceed standard 
safety levels (Ojo & Oketayo 2006, Nartey et al. 2011). 
Some metals like Fe, Cu, Co, Mn, Cr and Zn are essential 
micronutrients, but they can be detrimental to man and other 
living organisms at higher concentrations (Nurnberg 1982, 
Kar et al. 2008, Nair et al. 2010). According to Wakida et 
al. (2008), industrial waste reaching the sea via atmospheric 
precipitation and dumping of urban and rural waste is mostly 
responsible for the input of trace elements into the marine 
and stream environments, which are afterwards incorporated 
into the sediments. Trace and rare earth elements are serious 
pollutants because of their toxicity, persistent and non-deg-
radability and thus imparting into the water and debasing its 
quality in an environment (Tijani et al. 2005). Several studies 
have shown the harmful effects and health hazards of REEs 
to human beings, and it has already been proven that long-
term exposure of REE dust may cause pneumoconiosis in 
humans (Hirano & Suzuki 1996).

This work analyses trace and rare earth elements con-
centration in the Agbangudu stream sediments and pollution 
indices such as enrichment factor (EF), contamination factor 
(CF), pollution load index (PLI), degree of contamination 
(DC) and geochemical index (Igeo).

MATERIALS AND METHODS

Study Area

Ijero-Ekiti is located 42km northwest of Ado-Ekiti, the state 
capital, and lies between longitudes 5o00’E and 5o07’E, and 
latitudes 7o46’N and 7o53’N. The Ijero-Ekiti area is under-
lain by the basement complex rocks of Southwest, Nigeria 
(Fig. 1). The local geology consists of the migmatite gneiss, 
quartzite, schist biotite gneiss, calc-gneiss, epidiorite, biotite 
schist, amphibole schist, granite and pegmatite (Fig. 2). Fig. 
3 shows the Ijero area and the sampling points.

The migmatite gneiss occurs within the eastern part cov-
ering about two-fifth of the area, biotite gneiss predominantly 

 
Fig. 1: Geological map of Nigeria showing basement complex, schist belts, and sedimentary terrain (After Akinola 

et al. 2014). 
 

The migmatite gneiss occurs within the eastern part covering about two-fifth of the area, biotite gneiss 

predominantly covers the northwest (the gneissic rocks are essentially highly foliated and denuded); calc-

gneiss and quartzite occupy a narrow NE-SW strip around Ijero-Ekiti town (Okunlola & Akinola 2010). 

Epidiorite occurs as the major ultramafic assemblage while amphibole schist and biotite schist occupy the 

central, low-lying area that is occasionally pulsed with granites and pegmatite intrusions now exposed due 

to prolonged weathering activities. The pegmatite occurs as very coarse-grained dykes, dykelets and 

sometimes of extensive dimension (Okunlola & Akinola 2010). Steeply dipping complex pegmatite 

around Ijero-Ekiti typically consists of an outer medium-grained microcline-albite-quartz-muscovite zone, 

an intermediate zone comprising coarse-grained microcline-albite-quartz, blocky microcline-quartz, 

coarse-grained quartz or lepidolite-quartz and finally, a core of coarse-grained muscovite-quartz and 

quartz (Okunlola 2005). Several workers have worked on the geology, tectonics, etc., of the Nigerian 

Precambrian Basement complex (Burke & Dewey 1972, Oyawoye 1972, Rahaman 1976, Rahaman & 

Ocan 1978, Black et al. 1979, Turner 1983, Ajibade et al. 1987, Rahaman 1988). 

Fig. 1: Geological map of Nigeria showing basement complex, schist belts, and sedimentary terrain (After Akinola et al. 2014).
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Fig. 2: Geological map of Ijero Ekiti area (After Okunlola & Akinola 2010).

covers the northwest (the gneissic rocks are essentially highly 
foliated and denuded); calc-gneiss and quartzite occupy a 
narrow NE-SW strip around Ijero-Ekiti town (Okunlola & 
Akinola 2010). Epidiorite occurs as the major ultramafic 
assemblage while amphibole schist and biotite schist occupy 
the central, low-lying area that is occasionally pulsed with 
granites and pegmatite intrusions now exposed due to pro-
longed weathering activities. The pegmatite occurs as very 
coarse-grained dykes, dykelets and sometimes of extensive 
dimension (Okunlola & Akinola 2010). Steeply dipping 
complex pegmatite around Ijero-Ekiti typically consists of 
an outer medium-grained microcline-albite-quartz-muscovite 
zone, an intermediate zone comprising coarse-grained micro-
cline-albite-quartz, blocky microcline-quartz, coarse-grained 
quartz or lepidolite-quartz and finally, a core of coarse-
grained muscovite-quartz and quartz (Okunlola 2005). 
Several workers have worked on the geology, tectonics, etc., 
of the Nigerian Precambrian Basement complex (Burke & 
Dewey 1972, Oyawoye 1972, Rahaman 1976, Rahaman & 
Ocan 1978, Black et al. 1979, Turner 1983, Ajibade et al. 
1987, Rahaman 1988).

Sample Pre-treatment  

Several samples were initially obtained while 10, which were 

representative of the stream channels, were eventually select-
ed and analysed. Samples were taken at a depth of 20-25cm 
and bagged and labelled to avoid mix up. The geographical 
locations of each sample collected were noted and recorded 
in the field notebook. The samples were air-dried, pulverized, 
homogenized, packaged and sent to the laboratory in Stel-
lenbosch University, South Africa for geochemical analysis. 
The trace and rare elemental data for this work were acquired 
using Laser Ablation inductively coupled plasma spectrom-
eter (LA-ICP-MS) analyses. LA-ICP-MS is a powerful and 
sensitive analytical technique for multi-elemental analysis. 
The laser was used to vaporize the surface of the solid sample, 
while the vapour, and any particles, were then transported 
by the carrier gas flow to the ICP-MS. 

The analytical results were compiled to form a multi-ele-
mental database using Excel and Past. The statistical analyses, 
including principal component analysis (PCA) and cluster 
analysis (CA), were performed using Past statistical software.

RESULTS AND DISCUSSION

Distribution of Trace and Rare Earth Elements

The trace and rare elements composition, average values, 
background values of the Ijero stream sediments sampled, 
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upper continental crust values and average shale values are 
presented in Table 1. The background or control sample is 
the normal abundance of uncontaminated background levels 
in the stream sediments. These data revealed that the mean 
values of V, Co, Cu, Zr, Nb, Hf, Th, Mo and REEs: La, Ce, 
Pr, Nd, Sm, Sc, are below the background values, while Cr, 
Ni, Zn, Rb, Sr, Cs, Ba and the REEs: Eu, Gd, Tb, Dy, Er, Tm, 
Yb, Lu, Y, exceeded the background values. These elements 
with higher concentrations than the background values could 
become a major cause of concern. Figs. 4 and 5 are bivariate 
plots comparing trace element concentration and REE con-
centration of the samples studied with the mean of the upper 
continental crust and the average shale value respectively. 
Zn, Rb, Zr, and Nb showed significant enrichment compared 
to UCC and AVS. For the REEs, the concentrations showed 
the same pattern with the UCC and AVS. Fig. 6 is an AVS 
and UCC-normalized trace elements patterns for the stream 
sediments showing high levels of Nb and Ta, and to a lesser 
extent Rb, Zn, Cs and Hf. The AVS and UCC-normalized 
REE patterns for the stream sediments show an almost flat 
pattern, which might suggest the stream sediments are not 
that enriched in REEs (Fig. 7).

Enrichment Factor

Enrichment Factor (EF) is a useful pointer in assessing 
the level of contamination in an environment. According 

to Hernandez et al. (2003), the enrichment factor is the 
relative abundance of a chemical element in stream sedi-
ment compared to the bedrock. EF evaluates the degree of 
anthropogenic influence on element load in sediments and 
differentiates between elements of geogenic or anthropogenic 
origin (Fagbote & Olanipekun 2010). Enrichment factor 
values of trace and rare earth elements in the Agbangudu 
stream sediments are presented in Table 2. It was calculated 
using the formula originally introduced by Buat-Menard & 
Chesselet (1979):

	 EF = (Cn/Cref)sample / (Bn/Bref)background	 …(1)

Where, Cn is the concentration of the examined element 
in the examined environment; Cref is the concentration of 
the reference element in the examined environment; Bn is 
the background value of the examined element, and Bref is 
the background value of the reference element. The method 
by Salomons & Forstner (1984) was used, which entails 
comparing the present-day metal concentrations in sediments 
with standard earth materials as a normalizer in average shale.

Average shale value (AVS) and control value from Ture-
kian & Wedepohl (1961), UCC: Upper Continental Crust 
(Taylor & McLennan 1985, 1995)

The global average shale is frequently employed to pro-
vide background metal levels; the element’s concentration 

 
 
 
 
 
 

Fig. 3: The study area showing the sampling points. 
 

 

 

 

RESULTS AND DISCUSSION 

Distribution of Trace and Rare Earth Elements 

The trace and rare elements composition, average values, background values of the Ijero stream sediments 

sampled, upper continental crust values and average shale values are presented in Table 1. The 

background or control sample is the normal abundance of uncontaminated background levels in the 

stream sediments. These data revealed that the mean values of V, Co, Cu, Zr, Nb, Hf, Th, Mo and REEs: 

La, Ce, Pr, Nd, Sm, Sc, are below the background values, while Cr, Ni, Zn, Rb, Sr, Cs, Ba and the REEs: 

Eu, Gd, Tb, Dy, Er, Tm, Yb, Lu, Y, exceeded the background values. These elements with higher 

concentrations than the background values could become a major cause of concern. Figs. 4 and 5 are 

bivariate plots comparing trace element concentration and REE concentration of the samples studied with 

the mean of the upper continental crust and the average shale value respectively. Zn, Rb, Zr, and Nb 

showed significant enrichment compared to UCC and AVS. For the REEs, the concentrations showed the 

Fig. 3: The study area showing the sampling points.



425ASSESSMENT OF TRACE METALS IN STREAM SEDIMENTS IN IJERO-EKITI  

Nature Environment and Pollution Technology • Vol. 19, No. 2, 2020

in average shale obtained from Turekian & Wedepohl 
(1961) was used. An element can be considered as a ref-
erence element if it is of low occurrence variability and 
present in the environment in trace amounts (Loska et al. 
2003). According to Loska et al. (1997), it is also possible 
to apply an element of geochemical nature, which occurs 

in significant amounts in the environment but has no in-
teraction or resistance towards an examined element. A 
reference element is often a conservative one, unchanged 
by anthropogenic influences; and the most used reference 
elements include Sc, Mn, Ti, Al, Fe, Zn, etc. (Loska et al. 
1997, Mediolla et al. 2008). 

Table 1: Chemical composition (ppm) of trace and rare earth elements in the stream sediment

Elements
SAMPLE ID

Mean
Control 
sample

ASV UCC
AG-1 AG-2 AG-3 AG-4 AG-5 AG-6 AG-7 AG-8 AG-9 AG-10

V 85.54 112.76 68.83 69.07 46.87 56.93 62.47 61.52 115.41 53.16 73.26 86.43 130 107

Cr 151.38 211.07 86.39 84.29 54.21 67.57 244.49 58.37 79.47 45.84 108.31 30.04 90 85

Co 16.56 24.74 10.38 12.34 6.91 9.26 24.05 9.43 9.05 5.02 12.77 431.16 19 17

Ni 60.39 85.44 33.96 31.94 18.74 24.6 56.34 18.77 29.31 13.72 37.27 10.24 50 20

Cu 22.06 24.86 16.28 13.73 8.04 18.43 15.9 19.93 32.5 15.54 18.73 19.54 45 25

Zn 146.9 107.94 128.61 94.81 76.3 116.2 113.76 206.61 171.71 242.64 140.53 67.37 95 71

Rb 317.34 292.35 363.46 363.75 449.51 406.48 323.89 253.69 330.87 220.87 332.22 59.17 140 112

Sr 145.58 117.11 67.16 101.1 74.88 72.55 181.55 119.72 36.06 27.41 94.31 75.87 170 350

Zr 468.62 524.06 341.4 386.98 436 440.37 170.08 565.6 407.85 580.99 432.2 5573 160 190

Nb 204.05 112.54 114.32 226.24 132.57 188.13 108.09 292.49 127.68 214.27 172.04 280.5 11 12

Mo 0.77 0.63 0.66 0.59 0.5 0.77 0.75 0.77 1.56 0.52 0.69 1.4 2.6 1.5

Cs 12.85 14.83 17.18 11.42 10.25 11.7 16.05 7.89 18.03 9.15 12.94 0.28 5 4.6

Ba 317.77 343.6 311.66 361.12 281.17 272.79 750.85 368.04 274.87 210.53 349.24 123.43 580 550

Hf 14.84 14.82 10.3 10.81 12.83 12.86 5.04 20.64 11.87 15.89 12.99 26.23 5 5.8

Ta 125.97 32.55 32.2 77.29 45.57 48.67 16.49 49.55 32.97 43.95 50.521 1.02 1 1

Pb 20.22 21.13 26.16 26.99 21.7 25.54 31.53 31.19 22.53 16.61 24.36 15.21 20 17

Th 13.69 13.01 7.18 7.86 11.01 11.2 6.68 48.18 12.82 16.35 14.798 41.69 12 10.7

U 8.03 6.76 7.39 6.64 6.24 11.85 8.52 18.89 9.52 4.7 8.854 4.25 2.7 2.8

La 47.12 53.96 27.82 33.92 40.42 32.97 23.94 82.28 35.18 47.05 42.466 74.11 43 30

Ce 102.19 113.75 58.73 72.96 80.86 72.52 51.68 175.42 63.82 97.55 88.948 163.1 82 64

Pr 11.36 12.55 6.49 7.41 9.25 7.71 5.17 19.69 7.45 11.35 9.843 15.53 9.8 7.1

Nd 42.33 46.32 23.91 26.95 34.41 28.34 19.69 72.53 28.44 42.97 36.589 52.21 33 26

Sm 9.57 9.47 4.95 5.02 7.1 6.37 3.62 16.1 5.85 8.04 7.609 8.07 6.2 4.5

Eu 1.28 1.68 0.83 1.03 1.07 0.94 0.85 1.04 0.92 1.04 1.068 0.68 1.2 0.88

Gd 7.31 7.86 4.4 3.91 5.94 5.63 3.25 12.07 5.17 6.47 6.201 5.7 5.1 3.8

Tb 1.05 1.1 0.76 0.62 1.05 0.95 0.42 1.93 0.97 0.93 0.978 0.64 0.84 0.64

Dy 5.09 6.1 4.37 3.78 6.6 5.06 2.55 7.72 5.91 5.66 5.284 3.27 4.7 3.5

Ho 0.84 1.08 0.89 0.77 1.15 0.83 0.46 0.98 1.05 1.1 0.915 ND 1.11 0.8

Er 2.27 3.39 2.56 2.01 3.03 2.55 1.2 1.99 3 3.02 2.502 1.88 2.5 2.3

Tm 0.32 0.41 0.35 0.31 0.39 0.36 0.17 0.29 0.42 0.41 0.343 0.28 0.44 0.33

Yb 2.03 2.89 2.53 2.2 2.74 2.62 1.11 2.04 3.14 3.03 2.433 2.05 2.8 2.2

Lu 0.32 0.45 0.36 0.3 0.47 0.38 0.16 0.31 0.42 0.43 0.36 0.31 0.42 0.32

Sc 12.42 16.23 10.72 9.42 8.15 9.31 8.69 8.39 14.27 8.07 10.57 13.64 13 13.6

Y 24.09 30.19 24.27 20.84 32.34 26.09 11.87 29.17 30.42 28.94 25.82 24.17 26 22
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Table 2: Enrichment Factor (EF) of trace and rare earth elements in the stream sediments.

Elements AGU-   1 AGU-2 AGU-3 AGU-4 AGU-5 AGU-6 AGU-7 AGU-8 AGU-9 AGU-10 MEAN

V 0.43 0.76 0.39 0.53 0.45 0.36 0.4 0.22 0.49 0.16 0.42

Cr 1.09 2.07 0.71 0.94 0.75 0.61 2.27 0.3 0.49 0.2 0.94

Co 0.57 1.15 0.4 0.65 0.45 0.4 0.06 0.23 0.26 0.1 0.43

Ni 0.78 1.5 0.5 0.64 0.47 0.4 0.94 0.17 0.33 0.11 0.58

Cu 0.32 0.49 0.27 0.31 0.22 0.34 1.05 0.2 0.4 0.14 0.37

Rb 1.47 1.84 1.92 2.6 4.01 2.37 1.93 0.83 1.31 0.62 1.89

Sr 0.56 0.61 0.29 0.6 0.55 0.35 0.89 0.32 0.12 0.06 0.44

Zr 1.9 2.88 1.58 2.41 3.39 2.25 0.89 1.63 1.41 1.42 1.98

Nb 11.9 8.99 7.66 20.5 14.98 13.9 8.19 12.19 6.41 7.61 11.3

Mo 0.19 0.21 0.19 0.23 0.24 0.24 0.24 0.14 0.33 0.07 0.10

Cs 1.67 2.61 2.55 2.29 2.55 1.91 2.68 0.73 2.00 0.72 1.97

Ba 0.36 0.52 0.4 0.62 0.6 0.39 1.08 0.29 0.26 0.14 0.47

Hf 1.92 2.61 1.52 2.17 3.19 2.10 0.84 1.90 1.31 1.24 1.88

Ta 81.6 28.6 23.8 77.4 56.7 39.8 13.7 22.8 18.2 17.2 38.0

Pb 0.65 0.93 0.97 1.35 1.35 1.04 1.32 0.72 0.62 0.33 0.93

Th 0.74 0.95 0.44 0.66 1.14 0.76 0.46 1.85 0.59 0.53 0.81

U 1.93 2.20 2.02 2.46 2.88 3.59 2.64 3.22 1.95 0.68 2.36

La 1.45 1.29 0.81 1.14 0.91 1.03 1.34 2.17 0.86 1.10 1.21

Ce 1.65 1.43 1.43 0.89 1.28 0.95 1.18 1.52 2.42 0.82 1.36

Pr 1.53 1.32 0.83 1.09 0.91 1.05 1.27 2.28 0.80 1.17 1.22

Nd 1.70 1.44 0.90 1.18 1.01 1.15 1.44 2.49 0.91 1.31 1.35

Sm 2.04 1.57 1.00 1.17 1.11 1.37 1.41 2.94 1.00 1.31 1.49

Eu 1.41 1.44 0.86 1.24 0.86 1.05 1.71 0.98 0.81 0.87 1.12

Gd 1.89 1.58 1.08 1.11 1.12 1.48 1.54 2.68 1.07 1.28 1.48

Tb 1.65 1.35 1.13 1.06 1.21 1.51 1.21 2.60 1.22 1.12 1.41

Dy 1.43 1.33 1.16 1.16 1.36 1.44 1.31 1.86 1.33 1.22 1.36

Er 1.20 1.39 1.28 1.16 1.17 1.36 1.16 0.90 1.27 1.22 1.21

Tm 0.96 0.96 0.99 1.02 0.86 1.09 0.93 0.75 1.01 0.94 0.95

Yb 0.96 1.06 1.13 1.13 0.94 1.25 0.96 0.83 1.19 1.09 1.05

Lu 1.01 1.10 1.07 1.03 1.08 1.21 0.92 0.84 1.06 1.03 1.03

Sc 0.62 1.1 0.62 0.73 0.78 0.59 0.56 0.3 0.61 0.24 0.62

Y 0.60 1.02 0.69 0.80 0.55 0.82 0.38 0.52 0.65 0.44 0.75

Zn is moderately abundant; its natural abundance and 
sources surpass its anthropogenic source. In this study, the 
trace elements were normalized to Zn at global average shale 
value and Ho for the REE. These elements were chosen as the 
reference elements because there is no known anthropogenic 
activity either within the vicinity of the sampling locations or 
in the long-distance which can be traceable as the source of 
these elements. Five contaminated categories are recognized 
on the basis of the Enrichment Factor: EF <2 (deficiency to 

minimal enrichment); EF = 2 to 5 (moderate enrichments); 
EF = 5-20 (significant enrichment); EF = 20-40 (very high 
enrichment) and EF > 40, is extremely high enrichment 
(Sutherland 2000). According to Zhang & Liu (2002), 
EF values between 0.5 and 1.5 suggests that the element 
concerned may be derived entirely from crustal materials 
or natural weathering processes (geogenic). Values greater 
than 1.5 suggest a significant portion of the element has been 
supplied from non-natural (anthropogenic) sources. As the 
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EF values increase, the contributions of the anthropogenic 
origin also increase (Sutherland 2000).

The results of the enrichment factors of V, Cr, Co, Ni, 
Cu, Sr, Mo, Ba, Pb, Th, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, 
Mo, Dy, Er, Tm, Yb, Lu Sc, and Y shows that these metals 
are deficient to minimal enrichment, because EF were < 
2. According to Zhang & Liu (2002), they are therefore 
naturally derived from the stream sediment and geogenic 
sources resulting from weathering processes in the envi-
ronment. The average EF values of Rb, Zr, Hf, U and Cs 
indicated moderate enrichment, because they fall within 
the range of 2 < EF < 5. Only the EF of Nb has significant 
enrichment since the EF falls within the range 5 < EF < 20; 
and Ta has variable EF values from significant enrichment; 

very high enrichment to extremely high enrichment. Most 
of the EF values in the sediments were < 2 and 2< EF <5, 
except the Nb and Ta. According to Sutherland (2000) and 
Zhang et al. (2007), the metals, therefore, originated from 
anthropogenic activities.

Contamination Factor (CF) and Degree of 
Contamination (Cd)

According to Demie (2015), the degree of contamination 
is aimed at providing a measure of the degree of overall 
contamination in surface layers of a particular sampling site. 
CF is calculated for individual elements using the formula 
proposed by Hakanson (1980): CF = CElement / CBackground, 
where CElement is the concentration of elements at the con-

The results of the enrichment factors of V, Cr, Co, Ni, Cu, Sr, Mo, Ba, Pb, Th, La, Ce, Pr, Nd, Sm, Eu, 

Gd, Tb, Mo, Dy, Er, Tm, Yb, Lu Sc, and Y shows that these metals are deficient to minimal enrichment, 

because EF were < 2. According to Zhang & Liu (2002), they are therefore naturally derived from the 

stream sediment and geogenic sources resulting from weathering processes in the environment. The 
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taminated site and Cbackground is the background value of the 
same element.

Contamination Factor values of trace and rare earth 
elements in the Agbangudu stream sediments are presented 
in Table 3. Hakanson (1980) applied the CF under four cate-
gories: CF<1 indicates low contamination; 1<CF<3 indicates 
moderate contamination; 3<CF<6 indicates considerable 
contamination; and CF>6 indicates very high contamination. 
The results revealed that the CF of V, Co, Zr, Nb, Mo, Hf, 
Th, La, Ce, Pr, Nd, Sm are Scare low; CF<1. The CF of Cu, 
Zn, Sr, Ba, Pb, U, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu and Y 
all have moderate contamination. The CF of Cr, Ni, and Rb 
have considerable contamination; all of Cs and Ta locations 
have very high contamination because they have CF > 6. 
The high values for Cs and Ta may be due to geogenic and 
anthropogenic sources.

The degree of contamination (Cd) is the sum of individual 
contamination factor of the pollutant (Hakanson 1980). This 

parameter is aimed at providing a measure of the degree of 
overall contamination in surface layers in particular sampling 
sites. The degree of contamination (Cd) is computed by the 
equation by Hakanson (1980):

	

Tb, Dy, Ho, Er, Tm, Yb, Lu and Y all have moderate contamination. The CF of Cr, Ni, and Rb have 

considerable contamination; all of Cs and Ta locations have very high contamination because they have 

CF > 6. The high values for Cs and Ta may be due to geogenic and anthropogenic sources. 

The degree of contamination (Cd) is the sum of individual contamination factor of the pollutant 

(Hakanson 1980). This parameter is aimed at providing a measure of the degree of overall contamination 

in surface layers in particular sampling sites. The degree of contamination (Cd) is computed by the 

equation by Hakanson (1980): 

    …..…(2) 

 
Table 2: Enrichment Factor (EF) of trace and rare earth elements in the stream sediments 

Elements AGU-   
1 

AGU-
2 

AGU-
3 

AGU-
4 

AGU-
5 

AGU-
6 

AGU-
7 

AGU-
8 

AGU-
9 

AGU-
10 MEAN 

V 0.43 0.76 0.39 0.53 0.45 0.36 0.4 0.22 0.49 0.16 0.42 
Cr 1.09 2.07 0.71 0.94 0.75 0.61 2.27 0.3 0.49 0.2 0.94 
Co 0.57 1.15 0.4 0.65 0.45 0.4 0.06 0.23 0.26 0.1 0.43 
Ni 0.78 1.5 0.5 0.64 0.47 0.4 0.94 0.17 0.33 0.11 0.58 
Cu 0.32 0.49 0.27 0.31 0.22 0.34 1.05 0.2 0.4 0.14 0.37 
Rb 1.47 1.84 1.92 2.6 4.01 2.37 1.93 0.83 1.31 0.62 1.89 
Sr 0.56 0.61 0.29 0.6 0.55 0.35 0.89 0.32 0.12 0.06 0.44 
Zr 1.9 2.88 1.58 2.41 3.39 2.25 0.89 1.63 1.41 1.42 1.98 
Nb 11.9 8.99 7.66 20.5 14.98 13.9 8.19 12.19 6.41 7.61 11.3 
Mo 0.19 0.21 0.19 0.23 0.24 0.24 0.24 0.14 0.33 0.07 0.10 
Cs 1.67 2.61 2.55 2.29 2.55 1.91 2.68 0.73 2.00 0.72 1.97 
Ba 0.36 0.52 0.4 0.62 0.6 0.39 1.08 0.29 0.26 0.14 0.47 
Hf 1.92 2.61 1.52 2.17 3.19 2.10 0.84 1.90 1.31 1.24 1.88 
Ta 81.6 28.6 23.8 77.4 56.7 39.8 13.7 22.8 18.2 17.2 38.0 
Pb 0.65 0.93 0.97 1.35 1.35 1.04 1.32 0.72 0.62 0.33 0.93 
Th 0.74 0.95 0.44 0.66 1.14 0.76 0.46 1.85 0.59 0.53 0.81 
U 1.93 2.20 2.02 2.46 2.88 3.59 2.64 3.22 1.95 0.68 2.36 
La 1.45 1.29 0.81 1.14 0.91 1.03 1.34 2.17 0.86 1.10 1.21 
Ce 1.65 1.43 1.43 0.89 1.28 0.95 1.18 1.52 2.42 0.82 1.36 
Pr 1.53 1.32 0.83 1.09 0.91 1.05 1.27 2.28 0.80 1.17 1.22 
Nd 1.70 1.44 0.90 1.18 1.01 1.15 1.44 2.49 0.91 1.31 1.35 
Sm 2.04 1.57 1.00 1.17 1.11 1.37 1.41 2.94 1.00 1.31 1.49 
Eu 1.41 1.44 0.86 1.24 0.86 1.05 1.71 0.98 0.81 0.87 1.12 
Gd 1.89 1.58 1.08 1.11 1.12 1.48 1.54 2.68 1.07 1.28 1.48 
Tb 1.65 1.35 1.13 1.06 1.21 1.51 1.21 2.60 1.22 1.12 1.41 
Dy 1.43 1.33 1.16 1.16 1.36 1.44 1.31 1.86 1.33 1.22 1.36 
Er 1.20 1.39 1.28 1.16 1.17 1.36 1.16 0.90 1.27 1.22 1.21 
Tm 0.96 0.96 0.99 1.02 0.86 1.09 0.93 0.75 1.01 0.94 0.95 
Yb 0.96 1.06 1.13 1.13 0.94 1.25 0.96 0.83 1.19 1.09 1.05 
Lu 1.01 1.10 1.07 1.03 1.08 1.21 0.92 0.84 1.06 1.03 1.03 
Sc 0.62 1.1 0.62 0.73 0.78 0.59 0.56 0.3 0.61 0.24 0.62 
Y 0.60 1.02 0.69 0.80 0.55 0.82 0.38 0.52 0.65 0.44 0.75 
 

	 …..…(2)

Where, Cf is the contamination factor of each element; 
n is the number of elements under investigation. A modified 
form of the Hakanson (1980) equation proposed by Abrahim 
& Parker (2008) for the calculation of the overall degree of 
contamination was utilized in this study and computed by 
the equation 3:

	

Where, Cf is the contamination factor of each element; n is the number of elements under investigation. A 

modified form of the Hakanson (1980) equation proposed by Abrahim & Parker (2008) for the calculation 

of the overall degree of contamination was utilized in this study and computed by the equation 3: 

     …(3) 

Where, mCd is modified degree of contamination, n is the number of analysed element and Cfi is the 

contamination factor; the mCd data for the work are presented in Table 4. Abrahim & Parker (2008) 

proposed the following classes for the modified degree of contamination: mCd<1.5, nil to very low 

degree of contamination; 1.5≤mCd<2, low degree of contamination; 2≤mCd<4, moderate degree of 

contamination; 4≤mCd<8, high degree of contamination; 8≤mCd<16, a very high degree of 

contamination; 16 ≤ mCd< 32, an extremely high degree of contamination and mCd≥32 means the ultra-

high degree of contamination. Results from this study classified the level of the metal as non-

contaminated to very low contamination, while Ta and Nb showed a high degree of contamination.  
Table 3: Contamination factor (CF) of trace and rare earth elements in the stream sediment. 

Elements AGU-
1 

AGU-
2 

AGU-
3 

AGU-
4 

AGU-
5 

AGU-
6 

AGU-
7 

AGU-
8 

AGU-
9 

AGU-
10 MEAN 

V 0.99 1.31 0.80 0.80 0.54 0.66 0.72 0.71 1.34 0.62 0.85 
Cr 5.04 7.03 2.88 2.81 1.81 2.25 8.14 1.94 2.65 1.53 3.61 
Co 0.04 0.06 0.02 0.03 0.02 0.02 0.06 0.02 0.02 0.07 0.04 
Ni 5.09 8.34 3.32 3.12 1.83 2.40 5.50 1.83 2.86 1.34 3.56 
Cu 1.13 1.27 0.83 0.71 0.41 0.94 0.81 1.02 1.66 0.80 0.96 
Zn 2.18 1.60 1.91 1.42 1.13 1.73 1.69 3.07 2.55 3.60 2.09 
Rb 5.36 4.94 6.14 6.15 7.60 6.87 5.48 4.29 5.59 3.73 5.62 
Sr 1.92 1.54 0.89 1.33 0.99 0.96 2.39 1.58 0.48 0.36 1.24 
Zr 0.80 0.09 0.06 0.07 0.08 0.08 0.03 0.10 0.07 0.10 0.15 
Nb 0.73 0.40 0.41 0.81 0.47 0.67 0.39 1.04 0.46 0.76 0.61 
Mo 0.55 0.45 0.47 0.42 0.36 0.55 0.54 0.55 1.11 1.09 0.61 
Cs 45.89 52.96 61.36 40.79 36.61 41.79 57.32 28.18 64.39 32.68 46.20 
Ba 2.58 2.78 2.53 2.93 2.28 2.21 6.08 2.98 2.23 1.71 2.83 
Hf 0.57 0.57 0.39 0.41 0.49 0.49 0.19 0.79 0.45 0.61 0.50 
Ta 123.50 31.91 31.57 75.77 44.68 47.72 16.17 48.58 32.32 43.09 49.53 
Pb 1.33 1.39 1.72 1.77 1.43 1.68 2.07 2.05 1.48 1.09 1.60 
Th 0.33 0.31 0.17 0.19 0.26 0.27 0.16 1.16 0.31 0.39 0.35 
U 1.89 1.59 1.74 1.56 1.47 2.79 2.00 4.44 2.24 1.11 2.08 
La 0.64 0.73 0.38 0.46 0.55 0.44 0.32 1.11 0.47 0.63 0.57 
Ce 0.63 0.70 0.36 0.45 0.50 0.44 0.32 1.08 0.39 0.60 0.55 
Pr 0.73 0.81 0.42 0.48 0.60 0.50 0.33 1.27 0.48 0.73 0.63 
Nd 0.81 0.89 0.46 0.52 0.66 0.54 0.38 1.39 0.54 0.82 0.70 
Sm 1.19 1.17 0.61 0.62 0.88 0.79 0.45 2.00 0.72 1.00 0.94 
Eu 1.88 2.47 1.22 1.51 1.57 1.38 1.25 1.53 1.35 1.53 1.57 
Gd 1.28 1.38 0.77 0.69 1.04 0.99 0.57 2.12 0.91 1.14 1.09 
Tb 1.64 1.72 1.19 0.97 1.64 1.48 0.66 3.02 1.52 1.45 1.53 
Dy 1.56 1.87 1.34 1.16 2.02 1.55 0.78 2.36 1.81 1.73 1.62 
Ho 0.94 1.21 1.00 0.87 1.29 0.93 0.52 1.10 1.18 1.24 1.03 
Er 1.21 1.80 1.36 1.07 1.61 1.36 0.64 1.06 1.60 1.61 1.33 

	 …(3)

Where, mCd is modified degree of contamination, n is 
the number of analysed element and Cfi is the contamination 
factor; the mCd data for the work are presented in Table 4. 
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average shale value. 
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Abrahim & Parker (2008) proposed the following classes 
for the modified degree of contamination: mCd<1.5, nil to 
very low degree of contamination; 1.5£mCd<2, low degree 
of contamination; 2£mCd<4, moderate degree of contamina-
tion; 4£mCd<8, high degree of contamination; 8£mCd<16, 
a very high degree of contamination; 16 £ mCd< 32, an 
extremely high degree of contamination and mCd³32 means 

the ultra-high degree of contamination. Results from this 
study classified the level of the metal as non-contaminated 
to very low contamination, while Ta and Nb showed a high 
degree of contamination. 

Pollution Load Index (PLI)

The Pollution Load Index (PLI) was developed by Tomlin-

Table 3: Contamination factor (CF) of trace and rare earth elements in the stream sediment.

Elements AGU-1 AGU-2 AGU-3 AGU-4 AGU-5 AGU-6 AGU-7 AGU-8 AGU-9 AGU-10 MEAN

V 0.99 1.31 0.80 0.80 0.54 0.66 0.72 0.71 1.34 0.62 0.85

Cr 5.04 7.03 2.88 2.81 1.81 2.25 8.14 1.94 2.65 1.53 3.61

Co 0.04 0.06 0.02 0.03 0.02 0.02 0.06 0.02 0.02 0.07 0.04

Ni 5.09 8.34 3.32 3.12 1.83 2.40 5.50 1.83 2.86 1.34 3.56

Cu 1.13 1.27 0.83 0.71 0.41 0.94 0.81 1.02 1.66 0.80 0.96

Zn 2.18 1.60 1.91 1.42 1.13 1.73 1.69 3.07 2.55 3.60 2.09

Rb 5.36 4.94 6.14 6.15 7.60 6.87 5.48 4.29 5.59 3.73 5.62

Sr 1.92 1.54 0.89 1.33 0.99 0.96 2.39 1.58 0.48 0.36 1.24

Zr 0.80 0.09 0.06 0.07 0.08 0.08 0.03 0.10 0.07 0.10 0.15

Nb 0.73 0.40 0.41 0.81 0.47 0.67 0.39 1.04 0.46 0.76 0.61

Mo 0.55 0.45 0.47 0.42 0.36 0.55 0.54 0.55 1.11 1.09 0.61

Cs 45.89 52.96 61.36 40.79 36.61 41.79 57.32 28.18 64.39 32.68 46.20

Ba 2.58 2.78 2.53 2.93 2.28 2.21 6.08 2.98 2.23 1.71 2.83

Hf 0.57 0.57 0.39 0.41 0.49 0.49 0.19 0.79 0.45 0.61 0.50

Ta 123.50 31.91 31.57 75.77 44.68 47.72 16.17 48.58 32.32 43.09 49.53

Pb 1.33 1.39 1.72 1.77 1.43 1.68 2.07 2.05 1.48 1.09 1.60

Th 0.33 0.31 0.17 0.19 0.26 0.27 0.16 1.16 0.31 0.39 0.35

U 1.89 1.59 1.74 1.56 1.47 2.79 2.00 4.44 2.24 1.11 2.08

La 0.64 0.73 0.38 0.46 0.55 0.44 0.32 1.11 0.47 0.63 0.57

Ce 0.63 0.70 0.36 0.45 0.50 0.44 0.32 1.08 0.39 0.60 0.55

Pr 0.73 0.81 0.42 0.48 0.60 0.50 0.33 1.27 0.48 0.73 0.63

Nd 0.81 0.89 0.46 0.52 0.66 0.54 0.38 1.39 0.54 0.82 0.70

Sm 1.19 1.17 0.61 0.62 0.88 0.79 0.45 2.00 0.72 1.00 0.94

Eu 1.88 2.47 1.22 1.51 1.57 1.38 1.25 1.53 1.35 1.53 1.57

Gd 1.28 1.38 0.77 0.69 1.04 0.99 0.57 2.12 0.91 1.14 1.09

Tb 1.64 1.72 1.19 0.97 1.64 1.48 0.66 3.02 1.52 1.45 1.53

Dy 1.56 1.87 1.34 1.16 2.02 1.55 0.78 2.36 1.81 1.73 1.62

Ho 0.94 1.21 1.00 0.87 1.29 0.93 0.52 1.10 1.18 1.24 1.03

Er 1.21 1.80 1.36 1.07 1.61 1.36 0.64 1.06 1.60 1.61 1.33

Tm 1.14 1.46 1.25 1.11 1.39 1.29 0.61 1.04 1.50 1.46 1.23

Yb 0.99 1.41 1.23 1.07 1.34 1.28 0.54 1.00 1.53 1.48 1.19

Lu 1.03 1.45 1.16 0.97 1.52 1.23 0.52 1.00 1.35 1.39 1.16

Sc 0.91 1.91 0.79 0.69 0.60 0.68 0.64 0.62 1.05 0.59 0.85

Y 1.00 1.25 1.00 0.86 1.34 1.08 0.49 1.21 1.26 1.20 1.07
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son et al. (1980) to compare pollution levels between sites 
and propose a necessary line of action. According to Priju 
& Narayana (2006), PLI represents the number of times by 
which the element concentrations in the sediments exceeds 
the background concentration, and gives a summative indi-
cation of the overall level of element toxicity at a particular 
sample site. The PLI was computed based on the method 
proposed by Tomlinson et al. (1980). The PLI of the area was 
evaluated by obtaining the n-root from the n-CFs that were 
obtained for all the elements. This parameter is expressed as:

PLI = (CF1 × CF2 × CF3 ×..........CFn)1/n	 … (4)

Where, n is the number of elements and CF is the 
contamination factor, the PLI values are shown in Table 
4. According to Tomlinson et al. (1980), a Pollution Load 
Index (PLI) <1 denote perfection; PLI = 1 present that only 
baseline levels of pollutants are present and PLI > 1 would 
indicate deterioration of site quality. The results obtained 
put the PLI values at approximately 1, which indicates only 
baseline levels of metals. However, PLI data without Ta 
and Cs denotes perfection. Likuku et al. (2013) proposed 
that a PLI value of ³1 indicates an immediate intervention 
to ameliorate pollution; 0.5£PLI<1 suggests that more de-
tailed study is needed to monitor the site, whilst a value of 
<0.5 indicates that there is no need for drastic rectification 
measures to be taken.

Geoaccumulation Index (Igeo)

Geoaccumulation index (Igeo) was first introduced by Muller 
(1969) to compare the present-day heavy metal concentra-
tion with the pre-civilized background values. According to 
Singh et al. (1997), Igeo can be used to quantify the degree 
of contamination in stream sediments. Afkhami et al. (2013) 
affirmed that Igeo values can be used effectively and more 

meaningfully in explicating sediment quality. The Igeo of 
the elements was calculated by computing the base 2 log 
of the measured total concentration of the element over its 
background concentration using this equation:

	 Igeo = log2 [Cn/1.5 × Bn ]	 …(5)

Where, Cn is the measured concentration of the stream 
sample for the element (n), and Bn is the background value 
of the element (n). The correction factor; 1.5 was used to 
account for possible variations in background data due to 
lithogenic effects. Muller (1969) proposed seven descriptive 
classes for increasing Igeo values: Igeo>5 indicates extreme-
ly contaminated; 4<Igeo<5 indicates strongly to extremely 
contaminated; 3<Igeo<4 indicates strongly contaminated; 
2<Igeo<3 indicates moderately to strongly contaminated; 
1<Igeo<2 indicates moderately contaminated; 0<Igeo<1 
indicates uncontaminated to moderately contaminated; and 
Igeo = 0 indicates uncontaminated. The geoaccumulation 
index (Igeo) of the elements in the stream sediments is shown 
in Table 5. All the elements showed uncontaminated to mod-
erately contaminated, except for Cs and Ta with strongly to 
extremely contaminated status.

Rare Earth Element

The chondrite normalisation curves (Fig. 8) show enrichment 
in light rare earth elements (LREE) and depletion of heavy 
rare earth elements (HREE). The Average Shale Value (AVS) 
and the Upper Continental Crust (UCC) normalized REE 
distribution patterns of the stream sediments are given in Figs. 
9A and 9B indicating a moderate enrichment in LREE. All 
the samples show a (La/Yb)n>1, meaning an enrichment in 
LREE in the stream sediments (Table 6). These observations 
show that the REEs are mainly derived from intermediate 
and felsic rocks (McLennan 1989). Flat REE distribution 

Table 4: Modified Degree of Contamination (mCd) Pollution Load Index (PLI) of the trace and rare earth elements in the stream sediments.

Sample ID mCd PLI mCd* PLI*

AGU-1 6.40 1.32 1.42 1.03

AGU-2 4.12 1.40 1.62 1.13

AGU-3 3.88 1.00 1.14 0.79

AGU-4 4.55 1.02 1.12 0.79

AGU-5 3.56 1.03 1.17 0.82

AGU-6 3.82 1.07 1.18 0.85

AGU-7 3.49 0.86 1.33 0.69

AGU-8 3.74 1.43 1.48 1.17

AGU-9 4.11 1.16 1.27 0.93

AGU-10 3.31 1.05 1.08 0.84

mCd* and PLI* = without Ta and Cs values
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commonly observed from river sediments is due to the 
average upper crustal surface composition and source rocks 
(Sholkovitz 1993). Also, according to Sholkovitz (1993), the 
mixing and homogenizing effects of sedimentary processes 
will produce uniform REE pattern which signifies the abun-
dance in the upper continental crust. Enrichment of LREE 
reflects the intense silicate weathering of crustal materials 

and a subsequent increase in LREEs in detrital. The LREE/
HREE ratios for the stream sediments range from 6.7 to 12.9 
with an average of 9.13 (Table 5), which is slightly more 
than the upper crustal ratio and is equal to average shale 
ratio. (La/Yb)n ratios range between 7.89 to 28.93 with a 
mean ratio of 13.22 and that indicates very high erosional 
rates, which suggests that La was removed from the crustal 

Table 5: Geoaccumulation Index (Igeo) of trace and rare earth elements in the stream sediment.

Elements AG-1 AG-2 AG-3 AG-4 AG-5 AG-6 AG-7 AG-8 AG-9 AG-10 Mean

V -0.60 -0.20 -0.91 -0.91 -1.47 -1.19 -1.05 -1.08 -0.17 -1.29 -0.89

Cr 0.22 2.23 0.94 0.90 0.27 0.58 2.44 0.37 0.82 0.02 0.88

Co -5.29 -4.71 -5.96 -5.71 -6.55 -6.13 -4.75 -6.10 -6.16 -7.01 -5.84

Ni 1.98 2.48 1.14 1.06 0.29 0.68 1.87 0.29 0.93 -0.16 1.06

Cu -0.41 -0.24 -0.68 -1.09 -1.87 -0.67 -0.88 -0.56 0.15 -0.92 -0.72

Zn 0.54 0.10 0.35 -0.09 -0.41 0.20 0.17 1.03 0.76 1.26 0.39

Rb 1.84 1.72 2.03 2.04 2.34 2.20 1.87 1.52 1.90 1.32 1.88

Sr 0.36 0.04 -0.76 -0.17 -0.60 -0.65 0.67 0.07 -1.66 -2.05 -0.48

Zr -4.16 -4.00 -4.61 -4.43 -4.26 -4.25 -5.62 -3.89 -4.36 -3.85 -4.34

Nb -1.04 -1.90 -1.88 -0.90 -1.67 -1.83 -1.96 -0.52 -1.72 -0.97 -1.44

Mo -1.45 -1.74 -1.67 -1.83 -2.07 -1.45 -1.49 -1.45 -0.43 -2.01 -1.56

Cs 4.94 5.14 5.35 4.77 4.61 4.80 5.26 4.23 5.42 4.45 4.90

Ba 0.78 0.89 0.75 0.96 0.60 0.56 2.02 0.99 0.57 0.19 0.83

Hf -1.41 -1.41 -1.93 -1.86 -1.62 -1.61 -2.96 -0.93 -1.73 -1.31 -1.68

Ta 6.36 4.41 4.40 5.66 4.90 4.99 3.43 5.02 4.43 4.84 4.84

Pb -0.17 -0.11 0.20 0.24 -0.07 0.16 0.47 0.45 -0.02 -0.46 0.07

Th -2.19 -2.27 -3.12 -2.99 -2.51 -2.48 -3.23 -0.38 -2.29 -1.94 -2.34

U 0.33 0.08 0.21 0.06 -0.03 0.89 0.42 1.57 0.58 -0.44 0.37

La -1.24 -1.04 -2.00 -1.71 -1.46 -1.75 -2.22 -0.43 -1.66 -1.24 -1.48

Ce -1.26 -1.11 -2.06 -1.75 -1.60 -1.75 -2.24 -0.48 -1.94 -1.33 -1.55

Pr -1.04 -0.89 -1.84 -1.65 -1.33 -1.60 -2.17 -0.24 -1.64 -1.04 -1.34

Nd -0.89 -0.76 -1.71 -1.54 -1.19 -1.47 -1.99 -0.11 -1.46 -0.87 -1.20

Sm -0.34 -0.35 -1.29 -1.27 -0.77 -0.93 -1.74 0.41 -1.05 -0.59 -0.79

Eu 0.33 0.72 -0.30 0.01 0.07 -0.12 -0.26 0.03 -0.15 0.03 0.04

Gd -0.23 -0.12 -0.96 -1.13 -0.53 -0.60 -1.40 0.50 -0.73 -0.40 -0.56

Tb 0.13 0.20 -0.34 -0.63 0.13 -0.02 -1.19 1.01 0.01 -0.05 -0.07

Dy 0.05 0.31 -0.17 -0.38 0.43 0.04 -0.94 0.65 0.27 0.21 0.05

Ho -0.67 -0.31 -0.58 -0.79 -0.22 -0.69 -1.54 -0.45 -0.35 -0.28 -0.59

Er -0.31 0.27 -0.14 -0.49 0.10 -0.15 -1.23 -0.50 0.09 0.10 -0.23

Tm -0.39 -0.03 -0.26 -0.44 -0.11 -0.22 -1.30 -0.53 0.00 -0.03 -0.33

Yb -0.60 -0.09 -0.28 -0.48 -0.17 -0.23 -1.47 -0.59 0.03 -0.02 -0.39

Lu -0.54 -0.05 -0.37 -0.63 0.02 -0.29 -1.54 -0.58 -0.15 -0.11 -0.42

Sc -0.72 -0.33 -0.93 -1.12 -1.33 -1.14 -1.24 -1.29 -0.52 -1.34 -1.00

Y -0.59 -0.26 -0.58 -0.80 -0.16 -0.47 -1.61 -0.31 -0.25 -0.33 -0.54
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source through the weathering process, then transported and 
deposited by the streams.

According to McLennan (1988), generally, the La/Yb 
ratio is found to be very low in sediments rich in coarse size 
fractions and felsic minerals. Ramesh et al. (2000) opined 
that physical weathering is predominant in fine-grained sedi-
ments, which suggests that REEs fractionation took place in 
the stream. Y exhibits a moderate positive correlation with the 
LREEs (0.50), suggesting a partial association with detrital. 
Variation in Ce anomalies is indicative of terrigenous input, 
depositional environment and diagenetic conditions (Toyoda 
et al. 1990). Ce/Ce*>1 and <1 indicates positive (reducing 
environment) and negative (toxic environment) anomalies, 
respectively (Toyoda et al. 1990). Ce/Ce* ratio range of 3.14 
to 3.70 with a mean ratio of 3.47 suggests minimal terrige-
nous input in a reducing environment.

All the Eu/Eu* ratios for the stream sediments are <1 
(Table 6), implying that the origin of this element (Eu) is 

rich in feldspar source, contributing to a positive anomaly in 
the stream. According to Burg et al. (1984) and Gansser et 
al. (1983), this may also be due to the weathering of granite 
and granitic gneiss in the source region.

Cluster Analysis

For a more detailed comparison of the analysed metals and 
oxides in the stream sediments, cluster analysis by Ward 
(1963) method was performed and a dendrogram illustrat-
ing the results were presented in Figs. 10 to 12. This was 
employed in the study to see a possible association of the 
elements and to determine the similarities as regards the 
levels of the analysed metals and oxides. The distance 
cluster represents the degree of association between the 
elements and oxides. The lower the values on the distance 
cluster the more significant the association. Despite the 
common occurrence of these elements and oxides, their 
overall patterns were much different as revealed by the 

(1984) and Gansser et al. (1983), this may also be due to the weathering of granite and granitic gneiss in 

the source region. 

 

Fig. 8: REE composition of the stream sediments normalized to chondrites based on Taylor & McLennan (1985). 
 
 
 
Fig. 9: (A) The average shale value (AVS) and (B) upper continental crust (UCC) normalised REE distribution 
pattern of the stream sediments. 
 
 

 
Table 6:  Distribution of ∑LREE, ∑ HREE, ∑ REE, ∑ LREE/ ∑ HREE and ratios and anomalies of some rare earth elements in 

the stream sediments 
Sample 
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∑LREE/ 
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AG-9 140.74 21 206.43 6.7 8.04 3.88 1.36 0.51 3.14 
AG-10 206.96 22.09 266.06 9.37 11.14 3.78 1.77 0.44 3.36 

Fig. 9: (A) The average shale value (AVS) and (B) upper continental crust (UCC) normalised REE distribution pattern of the stream sediments.
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cluster analysis. In Fig. 10, three distinct clusters can be 
identified; Cluster 1 contained Y, La, Nd, SiO2 and Ce; 
indicating a close relationship between La and Nd, while a 
possible relationship was also exhibited between SiO2 and 
Ce. This was similar to the enrichment factor of the metals, 
where the results revealed that the metals were naturally 
derived and geogenic sources resulting from weathering 
processes in the sediments. Clusters 2 showed possible 
interaction between most rare-earth elements and oxides 
such as CrO2, MnO, P2O5, CaO, TiO2, Fe2O3, K2O, Na2O 
and MgO, while Cluster 3 reflected the strong relationship 

of Al2O3 with Sc, Gd, Dy, Pr and Sm at a particular level. 
These elements may probably be affected by a similar 
factor or originate from the same natural parents of the 
sediments. In Fig. 11, three clusters were also formed. 
Cluster 1 showed a close relationship between Zr, Rb and 
Ba. Cluster 2 showed that majority of the trace elements 
and oxides were found to be closely associated with other 
elements in natural materials, especially with those that 
formed a distinct cluster at a distance cluster of below 200, 
while Cluster 3 showed a close association between Zn, Nb, 
Cr, Sr, Ta, V and SiO2. The association may reflect possible 

 
 

Fig.10: Dendrogram derived from the hierarchical cluster analysis of rare-earth elements and major oxides in the 
analysed stream sediments. 

 
A distance cluster of about 160 was used for trace elements and rare-earth metals analysis (Fig. 12). 

Cluster 1 showed a close association between Cr, Sr and Ce. Cluster 2 is in three groups, with Ta, La, Ni 

and Nd in group 1, while the second group contained Cu, Pb, Y and Th and combines with the other 

group which contain most elements. This suggested that the association between these elements is very 

significant and further indicates that the elements probably originated from natural materials or natural 

geochemical system and/or possibly associated with inputs from anthropogenic activities. The clustering 

of the metals also reaffirms the confirmation of EF results, which shows that the metals are majorly from 

natural and geogenic sources. A distinct relationship was observed between Zn and Nb, while Rb, Ba and 

Zr also formed a distinct cluster at about 720 Euclidean distance. Rb and Zr indicated moderate 

enrichment from the EF, this was also affirmed from the close association of the metals.  
 

Fig.10: Dendrogram derived from the hierarchical cluster analysis of rare-earth elements and major oxides in the analysed stream sediments.

Table 6:  Distribution of SLREE, S HREE, S REE, S LREE/ S HREE and ratios and anomalies of some rare earth elements in the stream sediments.

Sample ID SLREE SHREE SREE SLREE/SHREE La/Yb La/Sm Gd/Yb Eu/Eu* Ce/Ce*

AG-1 212.57 20.51 269.59 10.36 16.65 3.18 2.98 0.47 3.51

AG-2 236.05 24.96 307.43 9.46 13.39 3.68 2.25 0.6 3.48

AG-3 121.9 17.05 173.94 7.15 7.89 3.63 1.44 0.54 3.48

AG-4 146.26 14.93 191.45 9.8 11.06 4.36 1.47 0.71 3.66

AG-5 172.04 22.44 234.97 7.67 10.58 3.68 1.79 0.5 3.33

AG-6 147.91 19.32 202.63 7.66 9.03 3.34 1.78 0.48 3.62

AG-7 104.1 10.17 134.83 10.24 15.47 4.27 2.42 0.76 3.7

AG-8 366.02 28.37 431.95 12.9 28.93 3.3 4.89 0.23 3.47

AG-9 140.74 21 206.43 6.7 8.04 3.88 1.36 0.51 3.14

AG-10 206.96 22.09 266.06 9.37 11.14 3.78 1.77 0.44 3.36

MEAN 185.46 20.08 241.93 9.13 13.22 3.71 2.22 0.52 3.47
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Table 7: Matrix of the principal analysis loadings of major oxides and trace elements in the stream sediments.

Oxides and elements PC1 PC2 PC3 PC4 PC5

SiO2 -0.017 0.011 -0.046 -0.009 -0.04

Al2O3 0.005 -0.015 0.01 0.005 0.016

Fe2O3 0.004 0.006 0.016 -0.007 0.007

CaO 0.0005 0.0008 0.003 0.004 0.003

MgO 0.002 0.002 0.008 0.004 0.004

MnO 0.0003 0.0004 -0.0002 -0.0001 -0.0003

K2O 0.002 -0.003 -0.006 0.006 -0.009

Na2O 0.001 -0.002 -0.001 0.0006 0.002

P2O5 0.0006 0.0006 0.0005 0.0003 0.0001

TiO2 -0.0001 0.002 0.003 -0.002 0.002

Cr2O3 -5.70E-38 -3.00E-37 -3.50E-36 7.90E-36 -1,0E-37

V -0.0008 0.017 0.262 -0.066 0.218

Cr 0.274 0.19 0.607 0.125 0.169

Co 0.025 0.02 0.062 0.027 0.012

Ni 0.053 0.046 0.283 0.096 0.122

Cu -0.004 0.015 0.046 -0.035 0.064

Zn -0.127 0.33 -0.179 -0.469 0.189

Rb 0.065 -0.601 -0.105 0.425 -0.225

Sr 0.181 0.188 0.066 0.443 0.127

Zr -0.552 0.435 0.266 0.318 -0.496

Nb -0.154 0.325 -0.554 0.39 0.232

Mo 3.70E-05 -0.0002 0.0002 -0.002 0.003

Cs 0.009 -0.012 0.024 -0.027 0.031

Ba 0.732 0.39 -0.207 0.061 -0.339

Hf -0.017 0.019 -0.0006 0.017 -0.017

Ta -0.048 0.026 -0.024 0.333 0.613

Pb 0.015 0.006 -0.037 0.013 -0.023

Th -0.022 0.074 -0.056 0.031 -0.09

U -0.001 0.015 -0.026 0.015 -0.022

natural parent materials, or inputs of some anthropogenic 
activities and/or natural geochemical system.

A distance cluster of about 160 was used for trace el-
ements and rare-earth metals analysis (Fig. 12). Cluster 1 
showed a close association between Cr, Sr and Ce. Cluster 2 
is in three groups, with Ta, La, Ni and Nd in group 1, while the 
second group contained Cu, Pb, Y and Th and combines with 
the other group which contain most elements. This suggested 
that the association between these elements is very significant 
and further indicates that the elements probably originated 
from natural materials or natural geochemical system and/or 
possibly associated with inputs from anthropogenic activities. 

The clustering of the metals also reaffirms the confirmation 
of EF results, which shows that the metals are majorly from 
natural and geogenic sources. A distinct relationship was 
observed between Zn and Nb, while Rb, Ba and Zr also 
formed a distinct cluster at about 720 Euclidean distance. 
Rb and Zr indicated moderate enrichment from the EF, this 
was also affirmed from the close association of the metals. 

Principal Component Analysis

The results of principal component analysis (PCA) of the 
metals and oxides concentrations in the stream sediments are 
shown in Tables 7-9. Five principal components were em-
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Fig. 11: Dendrogram derived from the hierarchical cluster analysis of trace elements and major oxides in 
the analysed stream sediments. 

 

 

Fig. 12: Dendrogram derived from the hierarchical cluster analysis of trace elements and rare-earths in the 
analysed stream sediments. 
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Table 8: Matrix of the principal analysis loadings of major oxides and rare-earth elements in the stream sediments.

Oxides and elements PC1 PC2 PC3 PC4 PC5

SiO2 0.052 0.759 -0.322 0.129 -0.057

Al2O3 -0.031 -0.226 0.226 -0.542 0.18

Fe2O3 -0.001 -0.23 0.077 0.379 0.3

CaO 0.001 -0.039 -0.002 0.004 -0.112

MgO -9.70E-07 -0.087 -0.004 0.101 -0.165

MnO 0.0001 -0.007 -0.007 0.006 0.016

K2O -0.004 -0.005 -0.064 -0.298 0.046

Na2O -0.003 -0.018 -0.029 -0.156 -0.068

P2O5 0 -0.002 -0.001 -0.004 -0.004

TiO2 0.005 0.009 0.028 0.143 -0.06

Cr2O3 1.43E-35 1.93E-34 -4.32E-03 1.07E-33 -8.72E-33

La 0.385 0.006 0.158 0.0771 0.551

Ce 0.836 -0.135 -0.153 -0.182 -0.396

Pr 0.096 0.019 0.018 0.046 0.045

Nd 0.354 0.086 0.079 0.324 0.343

Sm 0.081 -0.009 0.03 -0.085 0.067

Eu 0.002 -0.014 0.017 0.03 -0.079

Gd 0.057 -0.003 0.051 -0.06 0.04

Tb 0.008 0.005 0.015 -0.038 0.032

Dy 0.026 0.072 0.139 -0.094 0.125

Ho 0.002 0.018 0.025 0.009 -0.008

Er 0.001 0.043 0.094 0.0712 -0.11

Tm 0.0002 0.006 0.011 0.006 -0.011

Yb 0.0007 0.052 0.083 0.052 -0.068

Lu 0.0003 0.008 0.013 0.002 -0.013

Sc -0.0007 -0.26 0.352 0.455 -0.422

Y 0.065 0.454 0.785 -0.143 -0.141

elements and major oxides were less than 0.32 in the five 
rotated factors. Factor 2 accounted for 18%, where Zn and 
Zr were closely associated. Vanadium was found to be asso-
ciated with Ni and Zr in PC3, while Rb was associated with 
Sr and Nb in PC4; making up 5.86% of the total variance. 
The results indicated that the metals are associated with some 
rock-forming elements, which may have originated from 
parental materials of the sediments. Factors 2 and 3 associ-
ation revealed low to moderate contamination of the metals 
involved as revealed by the contamination factor result.       

Table 8 is the factor loadings for the metal oxides 
and rare-earth elements interactions from PCA. The first 
component explains 95.9% of the total variance and loads 
heavily on La, Ce and Nd. The loading pattern of these 
metals possibly reflects scarcely low contamination level. 

The second and third component, loaded on Y and (Al2O3, 
La, Dy and Sc), accounting for 1.95% and 1.68% of the 
total variance. The factors loading for trace and rare-earth 
elements interaction are shown in Table 9. The principal 
components that have eigenvalues higher than one were 
also employed for their interactions. The first component 
(PC1) explains 64.5% of the total variance and loads heav-
ily on Sr and Ba. The PC2 loads heavily by Zr, Nb and Ba 
and accounted for 18.9% of the total variance. The third 
and fourth component PC3 and PC4 account for 7.09% 
and 5.83% respectively, and loaded by Cr, Rb, Sr and Nb, 
while the PC5 accounted for 2.3% and loaded by Zr and 
Ba. The PCA analysis results suggest that the metals that 
load positively on the same component are likely associated 
and possibly showed similar sources, distribution pattern 
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and/or possibly affected by the same factors in the stream 
sediments. 

CONCLUSIONS

This study revealed that the mean values of V, Co, Cu, Zr, 
Nb, Hf, Th, Mo and REEs: La, Ce, Pr, Nd, Sm, Sc, are be-

low the background values, while Cr, Ni, Zn, Rb, Sr, Cs, Ba 
and the REEs: Eu, Gd, Tb, Dy, Er, Tm, Yb, Lu, Y, exceeded 
the background values. The average EF values of Rb, Zr, 
Hf, U and Cs indicate moderate enrichment, while Nb has 
significant enrichment. The study also classified the metals 
as non-contaminated to very low contamination, while Ta 
and Nb showed a high degree of contamination. The results 

Table 9: Matrix of the principal analysis loadings of trace and rare-earth elements in the stream sediments.

Elements PC1 PC2 PC3 PC4 PC5

V -0.0009 0.014 0.263 -0.059 0.166

Cr 0.27 0.191 0.632 0.041 -0.237

Co 0.024 0.02 0.-065 0.018 -0.018

Ni 0.052 0.047 0.295 0.06 -0.14

Cu -0.004 0.013 0.039 -0.038 -0.039

Zn -0.129 0.295 -0.221 -0.479 -0.149

Rb 0.07 0.201 0.101 0.406 -0.17

Sr 0.76 0.201 0.101 0.406 -0.17

Zr -0.555 0.405 0.311 0.234 0.352

Nb -0.157 0.315 -0.547 0.379 -0.271

Mo 4.30E-05 -0.0003 -0.0002 -0.002 -0.001

Cs 0.009 -0.012 0.021 -0.027 -0.02

Ba 0.723 0.41 -0.198 0.065 0.311

Hf -0.017 0.019 0.0008 0.016 0.017

Ta -0.048 0.026 -0.011 0.296 -0.635

Pb 0.015 0.008 -0.038 0.019 0.033

Th -0.023 0.074 -0.056 0.036 0.106

U -0.001 0.016 -0.027 0.019 0.033

La -0.044 0.112 0.002 0.084 0.132

Ce -0.089 0.251 0.0007 0.212 0.251

Pr -0.001 0.028 0.0006 0.021 0.03

Nd -0.041 0.105 0.003 0.071 0.11

Sm -0.009 0.023 -2.00E-05 0.02 0.023

Eu -0.0003 0.0008 0.003 0.001 6.00E-05

Gd -0.007 0.015 0.002 0.013 0.02

Tb -0.001 0.002 -0.004 0.002 0.004

Dy -0.006 0.003 0.002 0.004 0.019

Ho -0.0009 -0.0002 0.0009 -0.0003 0.002

Er -0.002 -0.002 0.006 -0.002 0.004

Tm -0.003 -0.002 0.003 -0.003 0.003

Yb -0.002 -0.002 0.003 -0.003 0.003

Lu -0.004 -0.0003 0.0006 -0.0002 0.0007

Sc -0.0007 -0.0008 0.036 -0.005 -0.015

Y -0.026 -0.007 0.024 0.0009 0.061
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showed the PLI values of approximately 1, which indicates 
only baseline levels of metals. The geoaccumulation index 
(Igeo) of the elements revealed uncontaminated to moder-
ately contaminated, except for Cs and Ta with strongly to 
extremely contaminated status. The LREE/HREE ratios for 
the stream sediments range from 6.7 to 12.9 with an average 
of 9.13. The (La/Yb)n ratios indicate very high erosional 
rates, which suggests that La was removed from the crustal 
source through the weathering process, which was later 
transported and deposited by the streams.
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